表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積,等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做乘法的平方差公式
公式運(yùn)用
可用于某些分母含有根號(hào)的分式:
1/(3-4倍根號(hào)2)化簡(jiǎn):
1×(3+4倍根號(hào)2)/(3-4倍根號(hào)2)^2;=(3+4倍根號(hào)2)/(9-32)=(3+4倍根號(hào)2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解題過程]
x^2-y^2=1991
(x+y)(x-y)=1991
因?yàn)?991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同時(shí)也可以是負(fù)數(shù)
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有時(shí)應(yīng)注意加減的過程。
常見錯(cuò)誤
平方差公式中常見錯(cuò)誤有:
①學(xué)生難于跳出原有的定式思維,如典型錯(cuò)誤;(錯(cuò)因:在公式的基礎(chǔ)上類推,隨意“創(chuàng)造”)
、诨煜;
、圻\(yùn)算結(jié)果中符號(hào)錯(cuò)誤;
④變式應(yīng)用難以掌握。
三角平方差公式
三角函數(shù)公式中,有一組公式被稱為三角平方差公式:
(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)
(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)
這組公式是化積公式的一種,由于酷似平方差公式而得名,主要用于解三角形。
注意事項(xiàng)
1、公式的左邊是個(gè)兩項(xiàng)式的積,有一項(xiàng)是完全相同的。
2、右邊的結(jié)果是乘式中兩項(xiàng)的平方差,相同項(xiàng)的平方減去相反項(xiàng)的平方。
3、公式中的a.b 可以是具體的數(shù),也可以是單項(xiàng)式或多項(xiàng)式。
例題
一,利用公式計(jì)算
(1) 103×97
解:(100+3)×(100-3)
=(100)^2-(3)^2
=100×100-3×3
=10000-9
=9991
(2) (5+6x)(5-6x)
解:5^2-(6x)^2
=25-36x^2
[高中數(shù)學(xué)的平方差公式大全]