- 《三角函數(shù)模型的簡(jiǎn)單應(yīng)用1》教案 鄧城 推薦度:
- 相關(guān)推薦
《函數(shù)的應(yīng)用》教案
作為一位無(wú)私奉獻(xiàn)的人民教師,總歸要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。教案應(yīng)該怎么寫才好呢?下面是小編幫大家整理的《函數(shù)的應(yīng)用》教案,僅供參考,希望能夠幫助到大家。
《函數(shù)的應(yīng)用》教案1
一、教材分析:
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過(guò)小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問(wèn)題,這三個(gè)問(wèn)題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒(méi)有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問(wèn)題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問(wèn)題的聯(lián)系。
本節(jié)教學(xué)時(shí)間安排1課時(shí)
二、教學(xué)目標(biāo):
知識(shí)技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體會(huì)方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒(méi)有實(shí)根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過(guò)程,獲得用圖象法求方程近似根的.體驗(yàn).
3.通過(guò)觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問(wèn)題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過(guò)利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問(wèn)題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
2.通過(guò)學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會(huì)方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
1.探索方程與函數(shù)之間關(guān)系的過(guò)程。
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
四、教學(xué)方法:?jiǎn)l(fā)引導(dǎo) 合作交流
五:教具、學(xué)具:課件
六、教學(xué)過(guò)程:
[活動(dòng)1] 檢查預(yù)習(xí) 引出課題
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
教師重點(diǎn)關(guān)注:學(xué)生回答問(wèn)題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來(lái),2題的格式要規(guī)范。
設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來(lái),讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問(wèn)題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過(guò)的熟悉的知識(shí)類比探究本課新知識(shí)。
[活動(dòng)2] 創(chuàng)設(shè)情境 探究新知
問(wèn)題
1. 課本P94 問(wèn)題.
2. 結(jié)合圖形指出,為什么有兩個(gè)時(shí)間球的高度是15m或0m?為什么只在一個(gè)時(shí)間球的高度是20m?
3. 結(jié)合預(yù)習(xí)題1,完成課本P94 觀察中的題目。
師生行為:教師提出問(wèn)題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問(wèn)題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問(wèn)題3是由學(xué)生分組探究的,這個(gè)問(wèn)題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
教師重點(diǎn)關(guān)注:
1.學(xué)生能否把實(shí)際問(wèn)題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;
2.學(xué)生在思考問(wèn)題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;
3.學(xué)生在探究問(wèn)題的過(guò)程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽(tīng)、獲得信息、梳理歸納的過(guò)程,使解決問(wèn)題的方法更準(zhǔn)確。
設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問(wèn)題入手給學(xué)生創(chuàng)設(shè)熟悉的問(wèn)題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問(wèn)題的關(guān)系;學(xué)生通過(guò)小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
[活動(dòng)3] 例題學(xué)習(xí) 鞏固提高
問(wèn)題
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
師生行為:教師提出問(wèn)題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過(guò)程中格式是否規(guī)范;(2)學(xué)生所畫(huà)圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計(jì)意圖:通過(guò)預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
[活動(dòng)4] 練習(xí)反饋 鞏固新知
《函數(shù)的應(yīng)用》教案2
一、方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)y=f(x),使f(x)=0 的實(shí)數(shù)x叫做函數(shù)的零點(diǎn)。(實(shí)質(zhì)上是函數(shù)y=f(x)與x軸交點(diǎn)的橫坐標(biāo))
2、函數(shù)零點(diǎn)的意義:方程f(x)=0 有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有交點(diǎn)函數(shù)y=f(x)有零點(diǎn)
3、零點(diǎn)定理:函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,并且有f(a)f(b)0,那么函數(shù)y=f(x)在區(qū)間(a,b)至少有一個(gè)零點(diǎn)c,使得f( c)=0,此時(shí)c也是方程 f(x)=0 的根。
4、函數(shù)零點(diǎn)的求法:求函數(shù)y=f(x)的零點(diǎn):
(1) (代數(shù)法)求方程f(x)=0 的實(shí)數(shù)根;
(2) (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)y=f(x)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
5、二次函數(shù)的零點(diǎn):二次函數(shù)f(x)=ax2+bx+c(a≠0).
1)△0,方程f(x)=0有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程f(x)=0有兩相等實(shí)根(二重根),二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△0,方程f(x)=0無(wú)實(shí)根,二次函數(shù)的圖象與x軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
二、二分法
1、概念:對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)0的函數(shù)y=f(x),通過(guò)不斷地把函數(shù)f(x)的零點(diǎn)所在的`區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
2、用二分法求方程近似解的步驟:
、糯_定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精確度ε;
、魄髤^(qū)間(a,b)的中點(diǎn)c;
⑶計(jì)算f(c),
、偃鬴(c)=0,則c就是函數(shù)的零點(diǎn);
、谌鬴(a)f(c)0,則令b=c(此時(shí)零點(diǎn)x0∈(a,c))
、廴鬴(c)f(b)0,則令a=c(此時(shí)零點(diǎn)x0∈(c,b))
(4)判斷是否達(dá)到精確度ε:即若|a-b|ε,則得到零點(diǎn)近似值為a(或b);否則重復(fù)⑵~⑷
三、函數(shù)的應(yīng)用:
(1)評(píng)價(jià)模型: 給定模型利用學(xué)過(guò)的知識(shí)解模型驗(yàn)證是否符合實(shí)際情況。
(2)幾個(gè)增長(zhǎng)函數(shù)模型:一次函數(shù):y=ax+b(a0)
指數(shù)函數(shù):y=ax(a1) 指數(shù)型函數(shù): y=kax(k1)
冪函數(shù): y=xn( nN*) 對(duì)數(shù)函數(shù):y=logax(a1)
二次函數(shù):y=ax2+bx+c(a0)
增長(zhǎng)快慢:V(ax)V(xn)V(logax)
解不等式 (1) log2x x2 (2) log2x 2x
(3)分段函數(shù)的應(yīng)用:注意端點(diǎn)不能重復(fù)取,求函數(shù)值先判斷自變量所在的區(qū)間。
(4)二次函數(shù)模型: y=ax2+bx+c(a≠0) 先求函數(shù)的定義域,在求函數(shù)的對(duì)稱軸,看它在不在定義域內(nèi),在的話代進(jìn)求出最值,不在的話,將定義域內(nèi)離對(duì)稱軸最近的點(diǎn)代進(jìn)求最值。
(5)數(shù)學(xué)建模:
《函數(shù)的應(yīng)用》教案3
課題:指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用
課型:綜合課
教學(xué)目標(biāo):在復(fù)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的特性之后,通過(guò)圖像對(duì)比使學(xué)生較快的學(xué)會(huì)不求值比較指數(shù)函數(shù)與對(duì)數(shù)函數(shù)值的大小及提高對(duì)復(fù)合型函數(shù)的定義域與值域的解題技巧。
重點(diǎn):指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的特性。
難點(diǎn):指導(dǎo)學(xué)生如何根據(jù)上述特性解決復(fù)合型函數(shù)的定義域與值域的問(wèn)題。
教學(xué)方法:多媒體授課。
學(xué)法指導(dǎo):借助列表與圖像法。
教具:多媒體教學(xué)設(shè)備。
教學(xué)過(guò)程:
一、 復(fù)習(xí)提問(wèn)。通過(guò)找學(xué)生分別敘述指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的公式及特性,加深學(xué)生的記憶。
二、 展示指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的一覽表。并和學(xué)生們共同復(fù)習(xí)這些性質(zhì)。
指數(shù)函數(shù)與對(duì)數(shù)函數(shù)關(guān)系一覽表
函數(shù)
性質(zhì)
指數(shù)函數(shù)
y=ax (a>0且a≠1)
對(duì)數(shù)函數(shù)
y=logax(a>0且a≠1)
定義域
實(shí)數(shù)集R
正實(shí)數(shù)集(0,﹢∞)
值域
正實(shí)數(shù)集(0,﹢∞)
實(shí)數(shù)集R
共同的點(diǎn)
(0,1)
(1,0)
單調(diào)性
a>1 增函數(shù)
a>1 增函數(shù)
0<a<1 減函數(shù)
0<a<1 減函數(shù)
函數(shù)特性
a>1
當(dāng)x>0,y>1
當(dāng)x>1,y>0
當(dāng)x<0,0<y<1
當(dāng)0<x<1, y<0
0<a<1
當(dāng)x>0, 0<y<1
當(dāng)x>1, y<0
當(dāng)x<0,y>1
當(dāng)0<x<1, y>0
反函數(shù)
y=logax(a>0且a≠1)
y=ax (a>0且a≠1)
圖像
Y
y=(1/2)x y=2x
(0,1)
X
Y
y=log2x
(1,0)
X
y=log1/2x
三、 同一坐標(biāo)系中將指數(shù)函數(shù)與對(duì)數(shù)函數(shù)進(jìn)行合成, 觀察其特點(diǎn),并得出y=log2x與y=2x、 y=log1/2x與y=(1/2)x 的圖像關(guān)于直線y=x對(duì)稱,互為反函數(shù)關(guān)系。所以y=logax與y=ax互為反函數(shù)關(guān)系,且y=logax的定義域與y=ax的值域相同,y=logax的值域與y=ax的定義域相同。
Y
y=(1/2)x y=2x y=x
。0,1) y=log2x
。1,0) X
y=log1/2x
注意:不能由圖像得到y(tǒng)=2x與y=(1/2)x為偶函數(shù)關(guān)系。因?yàn)榕己瘮?shù)是指同一個(gè)函數(shù)的圖像關(guān)于Y軸對(duì)稱。此圖雖有y=2x與y=(1/2)x圖像對(duì)稱,但它們是2個(gè)不同的函數(shù)。
四、 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)性質(zhì)去解決含有指數(shù)與對(duì)數(shù)的復(fù)合型函數(shù)的定義域、值域問(wèn)題及比較函數(shù)的大小值。
五、 例題
例⒈比較(Л)(-0.1)與(Л)(-0.5)的.大小。
解:∵ y=ax中, a=Л>1
∴ 此函數(shù)為增函數(shù)
又∵ ﹣0.1>﹣0.5
∴ (Л)(-0.1)>(Л)(-0.5)
例⒉比較log67與log76的大小。
解: ∵ log67>log66=1
log76<log77=1
∴ log67>log76
注意:當(dāng)2個(gè)對(duì)數(shù)值不能直接進(jìn)行比較時(shí),可在這2個(gè)對(duì)數(shù)中間插入一個(gè)已知數(shù),間接比較這2個(gè)數(shù)的大小。
例⒊ 求y=3√4-x2的定義域和值域。
解:∵√4-x2 有意義,須使4-x2≥0
即x2≤4, |x|≤2
∴-2≤x≤2,即定義域?yàn)閇-2,2]
又∵0≤x2≤4, ∴0≤4-x2≤4
∴0≤√4-x2 ≤2,且y=3x是增函數(shù)
∴30≤y≤32,即值域?yàn)閇1,9]
例⒋ 求函數(shù)y=√log0.25(log0.25x)的定義域。
解:要函數(shù)有意義,須使log0.25(log0.25x)≥0
又∵ 0<0.25<1,∴y=log0.25x是減函數(shù)
∴ 0<log0.25x≤1
∴ log0.251<log0.25x≤log0.250.25
∴ 0.25≤x<1,即定義域?yàn)閇0.25,1)
六、 課堂練習(xí)
求下列函數(shù)的定義域
1. y=8[1/(2x-1)]
2. y=loga(1-x)2 (a>0,且a≠1)
七、 評(píng)講練習(xí)
八、 布置作業(yè)
第113頁(yè),第10、11題。并預(yù)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)
在物理、社會(huì)科學(xué)中的實(shí)際應(yīng)用。
《函數(shù)的應(yīng)用》教案4
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的性質(zhì)
。ǘ┙馕觯罕竟(jié)課要學(xué)的內(nèi)容是對(duì)數(shù)函數(shù)的性質(zhì)及簡(jiǎn)單應(yīng)用,其核心(或關(guān)鍵)是對(duì)數(shù)函數(shù)的性質(zhì),理解它關(guān)鍵就是要利用對(duì)數(shù)函數(shù)的圖象.學(xué)生已經(jīng)掌握了對(duì)數(shù)函數(shù)的圖象特點(diǎn),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是構(gòu)造復(fù)雜函數(shù)的基本元素之一,所以對(duì)數(shù)函數(shù)的性質(zhì)是本單元的重要內(nèi)容之一.的重點(diǎn)是掌握對(duì)數(shù)函數(shù)的性質(zhì),解決重點(diǎn)的關(guān)鍵是利用對(duì)數(shù)函數(shù)的圖象,通過(guò)數(shù)形結(jié)合的思想進(jìn)行歸納總結(jié)。
二、目標(biāo)及解析
(一)教學(xué)目標(biāo):
1.掌握對(duì)數(shù)函數(shù)的性質(zhì)并能簡(jiǎn)單應(yīng)用
(二)解析:
(1)就是指根據(jù)對(duì)數(shù)函數(shù)的兩類圖象總結(jié)并理解對(duì)數(shù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、函數(shù)值的分布特征等性質(zhì),并能將這些性質(zhì)應(yīng)用到簡(jiǎn)單的問(wèn)題中。
三、問(wèn)題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是底數(shù)a對(duì)對(duì)數(shù)函數(shù)圖象和性質(zhì)的影響,產(chǎn)生這一問(wèn)題的原因是學(xué)生對(duì)參量認(rèn)識(shí)不到位,往往將參量等同于自變量.要解決這一問(wèn)題,就是要將參量的取值多元化,最好應(yīng)用幾何畫(huà)板的快捷性處理這類問(wèn)題,其中關(guān)鍵是應(yīng)用好幾何畫(huà)板.
四、教學(xué)支持條件分析
在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂?),有利于().
五、教學(xué)過(guò)程
問(wèn)題1.先畫(huà)出下列函數(shù)的簡(jiǎn)圖,再根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù) 的相關(guān)性質(zhì)。
設(shè)計(jì)意圖:
師生活動(dòng)(小問(wèn)題):
1.這些對(duì)數(shù)函數(shù)的解析式有什么共同特征?
2.通過(guò)這些函數(shù)的圖象請(qǐng)從值域、單調(diào)性、奇偶性方面進(jìn)行總結(jié)函數(shù)的性質(zhì)。
3.通過(guò)這些函數(shù)圖象請(qǐng)從函數(shù)值的分布角度總結(jié)相關(guān)性質(zhì)
4.通過(guò)這些函數(shù)圖象請(qǐng)總結(jié):當(dāng)自變量取一個(gè)值時(shí),函數(shù)值隨底數(shù)有什么樣的變化規(guī)律?
問(wèn)題2.先畫(huà)出下列函數(shù)的簡(jiǎn)圖,根據(jù)圖象歸納總結(jié)對(duì)數(shù)函數(shù) 的相關(guān)性質(zhì)。
問(wèn)題3.根據(jù)問(wèn)題1、2填寫下表
圖象特征函數(shù)性質(zhì)
a>10<a<1a>10<a<1
向y軸正負(fù)方向無(wú)限延伸函數(shù)的值域?yàn)镽+
圖象關(guān)于原點(diǎn)和y軸不對(duì)稱非奇非偶函數(shù)
函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域?yàn)镽
函數(shù)圖象都過(guò)定點(diǎn)(1,0)
自左向右,圖象逐漸上升自左向右,圖象逐漸下降增函數(shù)減函數(shù)
在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫坐標(biāo)大于1在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫標(biāo)大于0小于1
在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于0小于1在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于1
[設(shè)計(jì)意圖]發(fā)現(xiàn)性質(zhì)、弄清性質(zhì)的來(lái)龍去脈,是為了更好揭示對(duì)數(shù)函數(shù)的本質(zhì)屬性,傳統(tǒng)教學(xué)往往讓學(xué)生在解題中領(lǐng)悟。為了扭轉(zhuǎn)這種方式,我先引導(dǎo)學(xué)生回顧指數(shù)函數(shù)的性質(zhì),再利用類比的思想,小組合作的形式通過(guò)圖象主動(dòng)探索出對(duì)數(shù)函數(shù)的性質(zhì)。教學(xué)實(shí)踐表明:當(dāng)學(xué)生對(duì)對(duì)數(shù)函數(shù)的圖象已有感性認(rèn)識(shí)后,得到這些性質(zhì)必然水到渠成
例1.比較下列各組數(shù)中兩個(gè)值的大。
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
。3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
變式訓(xùn)練:1. 比較下列各題中兩個(gè)值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
、 log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比較正數(shù)m,n 的大小:
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < loga n (0 log a n (a>1)
例2.(1)若 且 ,求 的取值范圍
。2)已知 ,求 的取值范圍;
六、目標(biāo)檢測(cè)
1.比較 , , 的大。
2.求下列各式中的x的值
。1)
演繹推理導(dǎo)學(xué)案
2.1.2 演繹推理
學(xué)習(xí)目標(biāo)
1.結(jié)合已學(xué)過(guò)的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會(huì)演繹推理的重要性;
2.掌握演繹推理的基本方法,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單的推理.
學(xué)習(xí)過(guò)程
一、前準(zhǔn)備
復(fù)習(xí)1:歸納推理是由 到 的推理.
類比推理是由 到 的推理.
復(fù)習(xí)2:合情推理的結(jié)論 .
二、新導(dǎo)學(xué)
※ 學(xué)習(xí)探究
探究任務(wù)一:演繹推理的概念
問(wèn)題:觀察下列例子有什么特點(diǎn)?
。1)所有的金屬都能夠?qū)щ,銅是金屬,所以 ;
。2)一切奇數(shù)都不能被2整除,20xx是奇數(shù),所以 ;
。3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),所以 ;
。4)兩條直線平行,同旁內(nèi)角互補(bǔ).如果A與B是兩條平行直線的同旁內(nèi)角,那么 .
新知:演繹推理是
的推理.簡(jiǎn)言之,演繹推理是由 到 的推理.
探究任務(wù)二:觀察上述例子,它們都由幾部分組成,各部分有什么特點(diǎn)?
所有的金屬都導(dǎo)電 銅是金屬 銅能導(dǎo)電
已知的一般原理 特殊情況 根據(jù)原理,對(duì)特殊情況做出的判斷
大前提 小前提 結(jié)論
新知:“三段論”是演繹推理的一般模式:
大前提—— ;
小前提—— ;
結(jié)論—— .
新知:用集合知識(shí)說(shuō)明“三段論”:
大前提:
小前提:
結(jié) 論:
試試:請(qǐng)把探究任務(wù)一中的演繹推理(2)至(4)寫成“三段論”的.形式.
※ 典型例題
例1 命題:等腰三角形的兩底角相等
已知:
求證:
證明:
把上面推理寫成三段論形式:
變式:已知空間四邊形ABCD中,點(diǎn)E,F分別是AB,AD的中點(diǎn), 求證:EF 平面BCD
例2求證:當(dāng)a>1時(shí),有
動(dòng)手試試:1證明函數(shù) 的值恒為正數(shù)。
2 下面的推理形式正確嗎?推理的結(jié)論正確嗎?為什么?
所有邊長(zhǎng)相等的凸多邊形是正多邊形,(大前提)
菱形是所有邊長(zhǎng)都相等的凸多邊形, (小前提)
菱形是正多邊形. (結(jié) 論)
小結(jié):在演繹推理中,只要前提和推理形式是正確的,結(jié)論必定正確.
三、總結(jié)提升
※ 學(xué)習(xí)小結(jié)
1. 合情推理 ;結(jié)論不一定正確.
2. 演繹推理:由一般到特殊.前提和推理形式正確結(jié)論一定正確.
3應(yīng)用“三段論”解決問(wèn)題時(shí),首先應(yīng)該明確什么是大前提和小前提,但為了敘述簡(jiǎn)潔,如果大前提是顯然的,則可以省略.
※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分:
1. 因?yàn)橹笖?shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則 是增函數(shù).這個(gè)結(jié)論是錯(cuò)誤的,這是因?yàn)?/p>
A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤
2. 有這樣一段演繹推理是這樣的“有些有理數(shù)是真分?jǐn)?shù),整數(shù)是有理數(shù),則整數(shù)是真分?jǐn)?shù)”
結(jié)論顯然是錯(cuò)誤的,是因?yàn)?/p>
A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤
3. 有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線 平面 ,直線 平面 ,直線 ∥平面 ,則直線 ∥直線 ”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?/p>
A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤
4.歸納推理是由 到 的推理;
類比推理是由 到 的推理;
演繹推理是由 到 的推理.
后作業(yè)
1. 運(yùn)用完全歸納推理證明:函數(shù) 的值恒為正數(shù)。
直觀圖
總 課 題空間幾何體總課時(shí)第4課時(shí)
分 課 題直觀圖畫(huà)法分課時(shí)第4課時(shí)
目標(biāo)掌握斜二側(cè)畫(huà)法的畫(huà)圖規(guī)則.會(huì)用斜二側(cè)畫(huà)法畫(huà)出立體圖形的直觀圖.
重點(diǎn)難點(diǎn)用斜二側(cè)畫(huà)法畫(huà)圖.
引入新課
1.平行投影、中心投影、斜投影、正投影的有關(guān)概念.
2.空間圖形的直觀圖的畫(huà)法——斜二側(cè)畫(huà)法:
規(guī)則:(1)____________________________________________________________.
(2)____________________________________________________________.
。3)____________________________________________________________.
。4)____________________________________________________________.
例題剖析
例1 畫(huà)水平放置的正三角形的直觀圖.
例2 畫(huà)棱長(zhǎng)為 的正方體的直觀圖.
鞏固練習(xí)
1.在下列圖形中,采用中心投影(透視)畫(huà)法的是__________.
2.用斜二測(cè)畫(huà)法畫(huà)出下列水平放置的圖形的直觀圖.
3.根據(jù)下面的三視圖,畫(huà)出相應(yīng)的空間圖形的直觀圖.
課堂小結(jié)
通過(guò)例題弄清空間圖形的直觀圖的斜二側(cè)畫(huà)法方法及步驟.
《函數(shù)的應(yīng)用》教案5
教學(xué)目標(biāo):
、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)
合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過(guò)程設(shè)計(jì):
⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。
⒉開(kāi)始正課
1 比較數(shù)的.大小
例 1 比較下列各組數(shù)的大小。
、舕oga5。1 ,loga5。9 (a>0,a≠1)
、苐og0。50。6 ,logЛ0。5 ,lnЛ
師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0 調(diào)遞減,所以loga5。1>loga5。9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞 增,所以loga5。1 板書(shū): 解:Ⅰ)當(dāng)0 ∵5。1<5。9 1="">loga5。9 、颍┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù), ∵5。1<5。9 ∴l(xiāng)oga5。1 師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征? 生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。 師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大? 生:找“中間量”, log0。50。6>0,lnЛ>0,logЛ0。5<0;lnл>1,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。 板書(shū):略。 師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函 數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù) 函數(shù)圖象的位置關(guān)系來(lái)比大小。 2 函數(shù)的定義域, 值 域及單調(diào)性。 例 2 ⑴求函數(shù)y=的定義域。 、平獠坏仁絣og0。2(x2+2x-3)>log0。2(3x+3) 師:如何來(lái)求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要 使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式, 被開(kāi)方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于 零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求 它們共同作用的結(jié)果。) 生:分母2x-1≠0且偶次根式的被開(kāi)方式log0。8x-1≥0,且真數(shù)x>0。 板書(shū): 解:∵ 2x-1≠0 x≠0。5 log0。8x-1≥0 , x≤0。8 x>0 x>0 ∴x(0,0。5)∪(0。5,0。8〕 師:接下來(lái)我們一起來(lái)解這個(gè)不等式。 分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零, 再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。 師:請(qǐng)你寫一下這道題的解題過(guò)程。 生:<板書(shū)> 解: x2+2x-3>0 x<-3 x="">1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的解為:1 ⒊小結(jié) 這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問(wèn)題,希望能通過(guò)這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。 ⒋作業(yè) 、沤獠坏仁 ①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù)) 、埔阎瘮(shù)y=loga(x2-2x),(a>0,a≠1) ①求它的單調(diào)區(qū)間;②當(dāng)0 ⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1) 、偾笏亩x域;②討論它的奇偶性; ③討論它的單調(diào)性。 、纫阎瘮(shù)y=loga(ax-1) (a>0,a≠1), ①求它的定義域; 、诋(dāng)x為何值時(shí),函數(shù)值大于1; 、塾懻撍膯握{(diào)性。 教學(xué)目標(biāo): 、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。 、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。 、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。 教學(xué)重點(diǎn)與難點(diǎn): 對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。 教學(xué)過(guò)程設(shè)計(jì): ⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。 ⒉開(kāi)始正課 1 比較數(shù)的大小 例 1 比較下列各組數(shù)的大小。 ⑴loga5.1 ,loga5.9 (a>0,a≠1) 、苐og0.50.6 ,logл0.5 ,lnл 師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征? 生:這兩個(gè)對(duì)數(shù)底相等。 師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大? 生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。 師:對(duì),請(qǐng)敘述一下這道題的`解題過(guò)程。 生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0 調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞 增,所以loga5.1 板書(shū): 解:。┊(dāng)0 ∵5.1<5.9 loga5.1="">loga5.9 ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù), ∵5.1<5.9 ∴l(xiāng)oga5.1 師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征? 生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。 師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大。 生:找“中間量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1, log0.50.6<1,所以logл0.5< log0.50.6< lnл。 板書(shū):略。 師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函 數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù) 函數(shù)圖象的位置關(guān)系來(lái)比大小。 2 函數(shù)的定義域, 值 域及單調(diào)性。 例 2 ⑴求函數(shù)y=的定義域。 、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3) 師:如何來(lái)求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要 使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式, 被開(kāi)方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于 零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求 它們共同作用的結(jié)果。) 生:分母2x-1≠0且偶次根式的被開(kāi)方式log0.8x-1≥0,且真數(shù)x>0。 板書(shū): 解:∵ 2x-1≠0 x≠0.5 log0.8x-1≥0 , x≤0.8 x>0 x>0 ∴x(0,0.5)∪(0.5,0.8〕 師:接下來(lái)我們一起來(lái)解這個(gè)不等式。 分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零, 再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。 師:請(qǐng)你寫一下這道題的解題過(guò)程。 生:<板書(shū)> 解: x2+2x-3>0 x<-3 x="">1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的解為:1 例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。 、舮=log0.5(x- x2) ⑵y=loga(x2+2x-3)(a>0,a≠1) 師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。 下面請(qǐng)同學(xué)們來(lái)解⑴。 生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。 一、內(nèi)容與解析 (一)內(nèi)容:函數(shù)單調(diào)性的應(yīng)用 。ǘ┙馕觯罕竟(jié)課要學(xué)的內(nèi)容指的是會(huì)判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性、會(huì)確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問(wèn)題,理解它關(guān)鍵就是要學(xué)會(huì)轉(zhuǎn)換式子 。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的`定義、代數(shù)式的變換、函數(shù)的概念等知識(shí),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個(gè)區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過(guò)程進(jìn)行證明。 二、教學(xué)目標(biāo)及解析 。ㄒ唬┙虒W(xué)目標(biāo): 掌握用定義證明函數(shù)單調(diào)性的步驟,會(huì)求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識(shí)解決問(wèn)題的能力。 (二)解析: 會(huì)證明就是指會(huì)利用三步曲證明函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間就是指會(huì)利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識(shí)解決問(wèn)題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問(wèn)題。 三、問(wèn)題診斷分析 在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是如何才能準(zhǔn)確確定 的符號(hào),產(chǎn)生這一問(wèn)題的原因是學(xué)生對(duì)代數(shù)式的恒等變換不熟練。要解決這一問(wèn)題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識(shí)補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。 四、教學(xué)支持條件分析 在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ,有利于()?/p> 教學(xué)目標(biāo): 1.能運(yùn)用反比例函數(shù)的相關(guān)知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問(wèn)題。 2.在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻 畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。 教學(xué)重點(diǎn)運(yùn)用反比例函數(shù)解決實(shí)際問(wèn)題 教學(xué)難點(diǎn)運(yùn)用反比例函數(shù)解決實(shí)際問(wèn)題 教學(xué)過(guò)程: 一、情景創(chuàng)設(shè) 引例:小麗是一個(gè)近視眼,整天眼鏡不離鼻子,但自己一直不理解自己的眼鏡配制的原理,很是苦悶,近來(lái)她了解到近視眼鏡的度數(shù)y(度)與鏡片的焦距為x(m)成反比例,并請(qǐng)教師傅了解到自己400度的近視眼鏡鏡片的焦距為0.2m,可惜她不知道反比例函數(shù)的概念,所以她寫不出y與x的.函數(shù)關(guān)系式,我們大家正好學(xué)過(guò)反比例函數(shù)了,誰(shuí)能幫助她解決這個(gè)問(wèn)題呢? 反比例函數(shù)在生活、生產(chǎn)實(shí)際中也有著廣泛的應(yīng)用。 例如:在矩形中S一定,a和b之間的關(guān)系?你能舉例嗎? 二、例題精析 例1、見(jiàn)課本73頁(yè) 例2、見(jiàn)課本74頁(yè) 例3、某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(千帕)是氣球體積V(米3)的反比例函數(shù)(1)寫出這個(gè)函數(shù)解析式(2)當(dāng)氣球的體積為0.8m3時(shí),氣球的氣壓是多少千帕?(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈ǎ瑸榱税踩鹨?jiàn),氣球的體積不小于多少立方米? 四、課堂練習(xí)課本P74練習(xí)1、2題 五、課堂小結(jié)反比例函數(shù)的應(yīng)用 六、課堂作業(yè)課本P75習(xí)題9.3第1、2題 七、教學(xué)反思 更多初二數(shù)學(xué)教案,請(qǐng)點(diǎn)擊 教學(xué)目標(biāo): 利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問(wèn)題解決問(wèn)題。 利用已有二次函數(shù)的知識(shí)經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問(wèn)題,初步形成數(shù)學(xué)建模能力,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。 在探索中體驗(yàn)數(shù)學(xué)來(lái)源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過(guò)合作學(xué)習(xí)獲得成功,樹(shù)立自信心。 教學(xué)重點(diǎn)和難點(diǎn): 運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。 教學(xué)過(guò)程: (一)引入: 分組復(fù)習(xí)舊知。 探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息? 可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論: 。1)如何畫(huà)圖 (2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn) 。3)所形成的三角形以及四邊形的面積 (4)對(duì)稱軸 從上面的問(wèn)題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。 。ǘ┬率冢 1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線上求一點(diǎn)E使SBCE= SABC。 再探索:在拋物線y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。 再探索:在拋物線y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。 2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。 例如:已知一拋物線的頂點(diǎn)坐標(biāo)是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線的解析式。 。ㄈ┨岣呔毩(xí) 根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境: 讓班級(jí)中的上科院小院士來(lái)簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長(zhǎng)度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。 讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。 (四)讓學(xué)生討論小結(jié)(略) 。ㄎ澹┳鳂I(yè)布置 1、在直角坐標(biāo)平面內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點(diǎn)A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。 。1)求二次函數(shù)的解析式; 。2)將上述二次函數(shù)圖象沿x軸向右平移2個(gè)單位,設(shè)平移后的圖象與y軸的交點(diǎn)為C,頂點(diǎn)為P,求 POC的`面積。 2、如圖,一個(gè)二次函數(shù)的圖象與直線y= x—1的交點(diǎn)A、B分別在x、y軸上,點(diǎn)C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個(gè)二次函數(shù)的解析式。 3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長(zhǎng),DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對(duì)稱軸為y軸,以1cm作為數(shù)軸的單位長(zhǎng)度,建立平面直角坐標(biāo)系,如圖2。 。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域; 。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實(shí)際橋長(zhǎng)(備用數(shù)據(jù): ,計(jì)算結(jié)果精確到1米) 一、教學(xué)目標(biāo): 1.掌握用待定系數(shù)法求三角函數(shù)解析式的方法; 2.培養(yǎng)學(xué)生用已有的知識(shí)解決實(shí)際問(wèn)題的能力; 3.能用計(jì)算機(jī)處理有關(guān)的近似計(jì)算問(wèn)題. 二、重點(diǎn)難點(diǎn): 重點(diǎn)是待定系數(shù)法求三角函數(shù)解析式; 難點(diǎn)是選擇合理數(shù)學(xué)模型解決實(shí)際問(wèn)題. 三、教學(xué)過(guò)程: 【創(chuàng)設(shè)情境】 三角函數(shù)能夠模擬許多周期現(xiàn)象,因此在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用. 【自主學(xué)習(xí)探索研究】 1.學(xué)生自學(xué)完成P42例1 點(diǎn)O為做簡(jiǎn)諧運(yùn)動(dòng)的物體的平衡位置,取向右的方向?yàn)槲矬w位移的正方向,若已知振幅為3cm,周期為3s,且物體向右運(yùn)動(dòng)到距平衡位置最遠(yuǎn)處時(shí)開(kāi)始計(jì)時(shí). 。1)求物體對(duì)平衡位置的位移x(cm)和時(shí)間t(s)之間的'函數(shù)關(guān)系; 。2)求該物體在t=5s時(shí)的位置. 。ń處熯M(jìn)行適當(dāng)?shù)脑u(píng)析.并回答下列問(wèn)題:據(jù)物理常識(shí),應(yīng)選擇怎樣的函數(shù)式模擬物體的運(yùn)動(dòng);怎樣求和初相位θ;第二問(wèn)中的“t=5s時(shí)的位置”與函數(shù)式有何關(guān)系?) 2.講解p43例2(題目加已改變) 2.講析P44例3 海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情況下,船在漲潮時(shí)駛進(jìn)航道,靠近船塢;卸貨后落潮是返回海洋.下面給出了某港口在某季節(jié)每天幾個(gè)時(shí)刻的水深. (1)選用一個(gè)三角函數(shù)來(lái)近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出在整點(diǎn)時(shí)的近似數(shù)值. 。2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與海底的距離),該船何時(shí)能進(jìn)入港口?在港口能呆多久? (3)若船的吃水深度為4米,安全間隙為1.5米,該船在2:00開(kāi)始卸貨,吃水深度以每小時(shí)0.3米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域? 問(wèn)題: (1)選擇怎樣的數(shù)學(xué)模型反映該實(shí)際問(wèn)題? (2)圖表中的最大值與三角函數(shù)的哪個(gè)量有關(guān)? 。3)函數(shù)的周期為多少? 。4)“吃水深度”對(duì)應(yīng)函數(shù)中的哪個(gè)字母? 3.學(xué)生完成課本P45的練習(xí)1,3并評(píng)析. 【提煉總結(jié)】 從以上問(wèn)題可以發(fā)現(xiàn)三角函數(shù)知識(shí)在解決實(shí)際問(wèn)題中有著十分廣泛的應(yīng)用,而待定系數(shù)法是三角函數(shù)中確定函數(shù)解析式最重要的方法.三角函數(shù)知識(shí)作為數(shù)學(xué)工具之一,在以后的學(xué)習(xí)中將經(jīng)常有所涉及.學(xué)數(shù)學(xué)是為了用數(shù)學(xué),通過(guò)學(xué)習(xí)我們逐步提高自己分析問(wèn)題解決問(wèn)題的能力. 四、布置作業(yè): P46習(xí)題1.3第14、15題 教學(xué)目標(biāo): 1、能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問(wèn)題 2、能根據(jù)實(shí)際問(wèn)題中的條件確定反比例函數(shù)的解析式。 3、在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步體會(huì)和認(rèn)識(shí)反比例函數(shù)是刻畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一種數(shù)學(xué)模型。 教學(xué)重點(diǎn)、難點(diǎn): 重點(diǎn):能利用反比例函數(shù)的相關(guān)的知識(shí)分析和解決一些簡(jiǎn)單的實(shí)際問(wèn)題 難點(diǎn):根據(jù)實(shí)際問(wèn)題中的條件確定反比例函數(shù)的解析式 教學(xué)過(guò)程: 一、情景創(chuàng)設(shè): 為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒, 已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6mg,請(qǐng)根據(jù)題中所提供的信息,解答下列問(wèn)題: (1)藥物燃燒時(shí),y關(guān)于x 的函數(shù)關(guān)系式為: ________, 自變量x 的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_(kāi)______. (2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí)學(xué)生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要經(jīng)過(guò)______分鐘后,學(xué)生才能回到教室; (3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能有效殺滅空氣中的'病菌,那么此次消毒是否有效?為什么? 二、新授: 例1、小明將一篇24000字的社會(huì)調(diào)查報(bào)告錄入電腦,打印成文。 (1)如果小明以每分種120字的速度錄入,他需要多少時(shí)間才能完成錄入任務(wù)? (2)錄入文字的速度v(字/min)與完成錄入的時(shí)間t(min)有怎樣的函數(shù)關(guān)系? 。3)小明希望能在3h內(nèi)完成錄入任務(wù),那么他每分鐘至少應(yīng)錄入多少個(gè)字? 例2某自來(lái)水公司計(jì)劃新建一個(gè)容積為 的長(zhǎng)方形蓄水池。 (1)蓄水池的底部S 與其深度 有怎樣的函數(shù)關(guān)系? 。2)如果蓄水池的深度設(shè)計(jì)為5m,那么蓄水池的底面積應(yīng)為多少平方米? 。3)由于綠化以及輔助用地的需要,經(jīng)過(guò)實(shí)地測(cè)量,蓄水池的長(zhǎng)與寬最多只能設(shè)計(jì)為100m和60m,那么蓄水池的深度至少達(dá)到多少才能滿足要求?(保留兩位小數(shù)) 三、課堂練習(xí) 1、一定質(zhì)量的氧氣,它的密度 (kg/m3)是它的體積V( m3) 的反比例函數(shù), 當(dāng)V=10m3時(shí),=1.43kg/m3. (1)求與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2m3時(shí)求氧氣的密度. 2、某地上年度電價(jià)為0.8元度,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55元至0.75元之間.經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當(dāng)x=0.65時(shí),y=-0.8. (1)求y與x之間的函數(shù)關(guān)系式; (2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少元時(shí),本年度電力部門的收益將比上年度增加20%? [收益=(實(shí)際電價(jià)-成本價(jià))(用電量)] 3、如圖,矩形ABCD中,AB=6,AD=8,點(diǎn)P在BC邊上移動(dòng)(不與點(diǎn)B、C重合),設(shè)PA=x,點(diǎn)D到PA的距離DE=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍. 四、小結(jié) 五、作業(yè) 30.31、2、3 教學(xué)目標(biāo) 1、能夠運(yùn)用函數(shù)的性質(zhì),指數(shù)函數(shù),對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問(wèn)題. (1)能通過(guò)閱讀理解讀懂題目中文字?jǐn)⑹鏊从车膶?shí)際背景,領(lǐng)悟其中的數(shù)學(xué)本,弄清題中出現(xiàn)的量及其數(shù)學(xué)含義. (2)能根據(jù)實(shí)際問(wèn)題的具體背景,進(jìn)行數(shù)學(xué)化設(shè)計(jì),將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并調(diào)動(dòng)函數(shù)的相關(guān)性質(zhì)解決問(wèn)題. (3)能處理有關(guān)幾何問(wèn)題,增長(zhǎng)率的問(wèn)題,和物理方面的實(shí)際問(wèn)題. 2、通過(guò)聯(lián)系實(shí)際的引入問(wèn)題和解決帶有實(shí)際意義的某些問(wèn)題,培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力和運(yùn)用數(shù)學(xué)的意識(shí),也體現(xiàn)了函數(shù)知識(shí)的應(yīng)用價(jià)值,也滲透了訓(xùn)練的價(jià)值. 3、通過(guò)對(duì)實(shí)際問(wèn)題的研究解決,滲透了數(shù)學(xué)建模的思想.提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生對(duì)函數(shù)思想等有了進(jìn)一步的了解. 教學(xué)建議 教材分析 (1)本小節(jié)內(nèi)容是全章知識(shí)的綜合應(yīng)用.這一節(jié)的出現(xiàn)體現(xiàn)了強(qiáng)化應(yīng)用意識(shí)的要求,讓學(xué)生能把數(shù)學(xué)知識(shí)應(yīng)用到生產(chǎn),生活的實(shí)際中去,形成應(yīng)用數(shù)學(xué)的意識(shí).所以培養(yǎng)學(xué)生分析解決問(wèn)題的能力和運(yùn)用數(shù)學(xué)的意識(shí)是本小節(jié)的重點(diǎn),根據(jù)實(shí)際問(wèn)題建立數(shù)學(xué)模型是本小節(jié)的難點(diǎn). 。2)在解決實(shí)際問(wèn)題過(guò)程中常用到函數(shù)的知識(shí)有:函數(shù)的概念,函數(shù)解析式的確定,指數(shù)函數(shù)的概念及其性質(zhì),對(duì)數(shù)概念及其性質(zhì),和二次函數(shù)的概念和性質(zhì).在方法上涉及到換元法,配方法,方程的思想,數(shù)形結(jié)合等重要的思方法..事業(yè)本節(jié)的學(xué)習(xí),既是對(duì)知識(shí)的復(fù)習(xí),也是對(duì)方法和思想的再認(rèn)識(shí). 教法建議 。1)本節(jié)中處理的均為應(yīng)用問(wèn)題,在題目的敘述表達(dá)上均較長(zhǎng),其中要分析把握的信息量較多.事業(yè)處理這種大信息量的閱讀題首先要在閱讀上下功夫,找出關(guān)鍵語(yǔ)言,關(guān)鍵數(shù)據(jù),特別是對(duì)實(shí)際問(wèn)題中數(shù)學(xué)變量的隱含限制條件的提取尤為重要. (2)對(duì)于應(yīng)用問(wèn)題的處理,第二步應(yīng)根據(jù)各個(gè)量的關(guān)系,進(jìn)行數(shù)學(xué)化設(shè)計(jì)建立目標(biāo)函數(shù),將實(shí)際問(wèn)題通過(guò)分析概括,抽象為數(shù)學(xué)問(wèn)題,最后是用數(shù)學(xué)方法將其化為常規(guī)的函數(shù)問(wèn)題(或其它數(shù)學(xué)問(wèn)題)解決.此類題目一般都是分為這樣三步進(jìn)行. 。3)在現(xiàn)階段能處理的應(yīng)用問(wèn)題一般多為幾何問(wèn)題,利潤(rùn)最大,費(fèi)用最省問(wèn)題,增長(zhǎng)率的問(wèn)題及物理方面的問(wèn)題.在選題時(shí)應(yīng)以以上幾方面問(wèn)題為主. 教學(xué)設(shè)計(jì)示例 函數(shù)初步應(yīng)用 教學(xué)目標(biāo) 1、能夠運(yùn)用常見(jiàn)函數(shù)的性質(zhì)及平面幾何有關(guān)知識(shí)解決某些簡(jiǎn)單的實(shí)際問(wèn)題. 2、通過(guò)對(duì)實(shí)際問(wèn)題的研究,培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力 3、通過(guò)把實(shí)際問(wèn)題向數(shù)學(xué)問(wèn)題的轉(zhuǎn)化,滲透數(shù)學(xué)建模的思想,提高學(xué)生用數(shù)學(xué)的意識(shí),及學(xué)習(xí)數(shù)學(xué)的興趣. 教學(xué)重點(diǎn),難點(diǎn) 重點(diǎn)是應(yīng)用問(wèn)題的閱讀分析和解決. 難點(diǎn)是根據(jù)實(shí)際問(wèn)題建立相應(yīng)的數(shù)學(xué)模型 教學(xué)方法 師生互動(dòng)式 教學(xué)用具 投影儀 教學(xué)過(guò)程b 一、提出問(wèn)題 數(shù)學(xué)來(lái)自生活,又應(yīng)用于生活和生產(chǎn)實(shí)踐.而實(shí)際問(wèn)題中又蘊(yùn)涵著豐富的數(shù)學(xué)知識(shí),數(shù)學(xué)思想與方法.如剛剛學(xué)過(guò)的函數(shù)內(nèi)容在實(shí)際生活中就有著廣泛的應(yīng)用.今天我們就一起來(lái)探討幾個(gè)應(yīng)用問(wèn)題. 問(wèn)題一:如圖,△是邊長(zhǎng)為2的正三角形,這個(gè)三角形在直線的左方被截得圖形的面積為,求函數(shù)的解析式及定義域.(板書(shū)) (作為應(yīng)用問(wèn)題由于學(xué)生是初次研究,所以可先選擇以數(shù)學(xué)知識(shí)為背景的應(yīng)用題,讓學(xué)生研究) 首先由學(xué)生自己閱讀題目,教師可利用計(jì)算機(jī)讓直線運(yùn)動(dòng)起來(lái),觀察三角形的變化,由學(xué)生提出研究方法.由學(xué)生說(shuō)出由于圖形的不同計(jì)算方法也不同,應(yīng)分類討論.分界點(diǎn)應(yīng)在,再由另一個(gè)學(xué)生說(shuō)出面積的計(jì)算方法. 當(dāng)時(shí)(采用直接計(jì)算的方法) 當(dāng)時(shí)(板書(shū)) (計(jì)算第二段時(shí),可以再畫(huà)一個(gè)相應(yīng)的圖形,如圖) 綜上! 此時(shí)可以問(wèn)學(xué)生這是什么函數(shù)?定義域應(yīng)怎樣計(jì)算?讓學(xué)生明確是分段函數(shù)的前提條件下,求出定義域?yàn)椋?板書(shū)) 問(wèn)題解決后可由教師簡(jiǎn)單小結(jié)一下研究過(guò)程中的主要步驟(1)閱讀理解;(2)建立目標(biāo)函數(shù);(3)按要求解決數(shù)學(xué)問(wèn)題. 下面我們一起看第二個(gè)問(wèn)題 問(wèn)題二:某工廠制定了從1999年底開(kāi)始到20xx年底期間的生產(chǎn)總值持續(xù)增長(zhǎng)的兩個(gè)三年計(jì)劃,預(yù)計(jì)生產(chǎn)總值年平均增長(zhǎng)率為,則第二個(gè)三年計(jì)劃生產(chǎn)總值與第一個(gè)三年計(jì)劃生產(chǎn)總值相比,增長(zhǎng)率為多少?(投影儀打出) 首先讓學(xué)生搞清增長(zhǎng)率的含義是兩個(gè)三年總產(chǎn)值之間的關(guān)系問(wèn)題,所以問(wèn)題轉(zhuǎn)化為已知年增長(zhǎng)率為,分別求兩個(gè)三年計(jì)劃的總產(chǎn)值. 設(shè)1999年總產(chǎn)值為,第一步讓學(xué)生依次說(shuō)出20xx年到20xx年的年總產(chǎn)值,它們分別為: 20xx年20xx年 20xx年20xx年 20xx年20xx年(板書(shū)) 第二步再讓學(xué)生分別算出第一個(gè)三年總產(chǎn)值和第二個(gè)三年總產(chǎn)值 =++ =. =++ =.(板書(shū)) 第三步計(jì)算增長(zhǎng)率. .(板書(shū)) 計(jì)算后教師可以讓學(xué)生總結(jié)一下關(guān)于增長(zhǎng)率問(wèn)題的研究應(yīng)注意的問(wèn)題.最后教師再指出關(guān)于增長(zhǎng)率的問(wèn)題經(jīng)常構(gòu)建的數(shù)學(xué)模型為,其中為基數(shù),為增長(zhǎng)率,為時(shí)間.所以經(jīng)常會(huì)用到指數(shù)函數(shù)有關(guān)知識(shí)加以解決. 總結(jié)后再提出最后一個(gè)問(wèn)題 問(wèn)題三:一商場(chǎng)批發(fā)某種商品的.進(jìn)價(jià)為每個(gè)80元,零售價(jià)為每個(gè)100元,為了促進(jìn)銷售,擬采用買一個(gè)這種商品贈(zèng)送一個(gè)小禮品的辦法,試驗(yàn)表明,禮品價(jià)格為1元時(shí),銷售量可增加10%,且在一定范圍內(nèi)禮品價(jià)格每增加1元銷售量就可增加10%.設(shè)未贈(zèng)送禮品時(shí)的銷售量為件. (1)寫出禮品價(jià)值為元時(shí),所獲利潤(rùn)(元)關(guān)于的函數(shù)關(guān)系式; (2)請(qǐng)你設(shè)計(jì)禮品價(jià)值,以使商場(chǎng)獲得最大利潤(rùn).(為節(jié)省時(shí)間,應(yīng)用題都可以用投影儀打出) 題目出來(lái)后要求學(xué)生認(rèn)真讀題,找出關(guān)鍵量.再引導(dǎo)學(xué)生找出與利潤(rùn)相關(guān)的量.包括銷售量,每件的利潤(rùn)及禮品價(jià)值等.讓學(xué)生思考后,列出銷售量的式子.再找學(xué)生說(shuō)出每件商品的利潤(rùn)的表達(dá)式,完成第一問(wèn)的列式計(jì)算. 解:.(板書(shū)) 完成第一問(wèn)后讓學(xué)生觀察解析式的特點(diǎn),提出如何求這個(gè)函數(shù)的最大值(此出最值問(wèn)題是學(xué)生比較陌生的,方法也是學(xué)生不熟悉的)所以學(xué)生遇到思維障礙,教師可適當(dāng)提示,如可以先具體計(jì)算幾個(gè)值看一看能否發(fā)現(xiàn)規(guī)律,若看不出規(guī)律,能否把具體計(jì)算改進(jìn)一下,再計(jì)算中能體現(xiàn)它是最大?也就是讓學(xué)生意識(shí)到應(yīng)用最大值的概念來(lái)解決問(wèn)題.最終將問(wèn)題概括為兩個(gè)不等式的求解即 (2)若使利潤(rùn)最大應(yīng)滿足 同時(shí)成立即解得 當(dāng)或時(shí),有最大值. 由于這是實(shí)際應(yīng)用問(wèn)題,在答案的選擇上應(yīng)考慮價(jià)值為9元的禮品贈(zèng)送,可獲的最大利潤(rùn). 三.小結(jié) 通過(guò)以上三個(gè)應(yīng)用問(wèn)題的研究,要學(xué)生了解解決應(yīng)用問(wèn)題的具體步驟及相應(yīng)的注意事項(xiàng). 四.作業(yè)略 五.板書(shū)設(shè)計(jì) 2.9函數(shù)初步應(yīng)用 問(wèn)題一: 解: 問(wèn)題二 分析 問(wèn)題三 分析 小結(jié): 二次函數(shù)的應(yīng)用 教學(xué)設(shè)計(jì)思想:本節(jié)主要研究的是與二次函數(shù)有關(guān)的實(shí)際問(wèn)題,重點(diǎn)是實(shí)際應(yīng)用題,在教學(xué)過(guò)程中讓學(xué)生運(yùn)用二次函數(shù)的知識(shí)分析問(wèn)題、解決問(wèn)題,在運(yùn)用中體會(huì)二次函數(shù)的實(shí)際意義。二次函數(shù)與一元二次方程、一元二次不等式有密切聯(lián)系,在學(xué)習(xí)過(guò)程中應(yīng)把二次函數(shù)與之有關(guān)知識(shí)聯(lián)系起來(lái),融會(huì)貫通,使學(xué)生的認(rèn)識(shí)更加深刻。另外,在利用圖像法解方程時(shí),圖像應(yīng)畫(huà)得準(zhǔn)確一些,使求得的解更準(zhǔn)確,在求解過(guò)程中體會(huì)數(shù)形結(jié)合的思想。 教學(xué)目標(biāo): 1.知識(shí)與技能 會(huì)運(yùn)用二次函數(shù)計(jì)其圖像的知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題。 2.過(guò)程與方法 通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),提高自主探索、團(tuán)結(jié)合作的能力,在運(yùn)用知識(shí)解決問(wèn)題中體會(huì)二次函數(shù)的應(yīng)用意義及數(shù)學(xué)轉(zhuǎn)化思想。 3.情感、態(tài)度與價(jià)值觀 通過(guò)學(xué)生之間的討論、交流和探索,建立合作意識(shí)和提高探索能力,激發(fā)學(xué)習(xí)的興趣和欲望。 教學(xué)重點(diǎn):解決與二次函數(shù)有關(guān)的實(shí)際應(yīng)用題。 教學(xué)難點(diǎn):二次函數(shù)的應(yīng)用。 教學(xué)媒體:幻燈片,計(jì)算器。 教學(xué)安排:3課時(shí)。 教學(xué)方法:小組討論,探究式。 教學(xué)過(guò)程: 第一課時(shí): Ⅰ.情景導(dǎo)入: 師:由二次函數(shù)的一般形式y(tǒng)= (a0),你會(huì)有什么聯(lián)想? 生:老師,我想到了一元二次方程的一般形式 (a0)。 師:不錯(cuò),正因?yàn)槿绱耍袝r(shí)我們就將二次函數(shù)的有關(guān)問(wèn)題轉(zhuǎn)化為一元二次方程的問(wèn)題來(lái)解決。 現(xiàn)在大家來(lái)做下面這兩道題:(幻燈片顯示) 1.解方程 。 2.畫(huà)出二次函數(shù)y= 的圖像。 教師找兩個(gè)學(xué)生解答,作為板書(shū)。 Ⅱ.新課講授 同學(xué)們思考下面的問(wèn)題,可以共同討論: 1.二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)是什么?它與方程 的根有什么關(guān)系? 2.如果方程 (a0)有實(shí)數(shù)根,那么它的根和二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)有什么關(guān)系? 生甲:老師,由畫(huà)出的圖像可以看出與x軸交點(diǎn)的橫坐標(biāo)是-1、2;方程的兩個(gè)根是-1、2,我們發(fā)現(xiàn)方程的兩個(gè)解正好是圖像與x軸交點(diǎn)的橫坐標(biāo)。 生乙:我們經(jīng)過(guò)討論,認(rèn)為如果方程 (a0)有實(shí)數(shù)根,那么它的根等于二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)。 師:說(shuō)的很好; 教師總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根。 師:我們知道方程的兩個(gè)解正好是二次函數(shù)圖像與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),那么二次函數(shù)圖像與x軸的交點(diǎn)問(wèn)題可以轉(zhuǎn)化為一元二次方程的根的問(wèn)題,我們共同研究下面問(wèn)題。 [學(xué)法]:通過(guò)實(shí)例,體會(huì)二次函數(shù)與一元二次方程的關(guān)系,解一元二次方程實(shí)質(zhì)上就是求二次函數(shù)為0的自變量x的取值,反映在圖像上就是求拋物線與x軸交點(diǎn)的橫坐標(biāo)。 問(wèn)題:已知二次函數(shù)y= 。 (1)觀察這個(gè)函數(shù)的圖像(圖34-9),一元二次方程 =0的.兩個(gè)根分別在哪兩個(gè)整數(shù)之間? (2)①由在0至1范圍內(nèi)的x值所對(duì)應(yīng)的y值(見(jiàn)下表),你能說(shuō)出一元二次方程 =0精確到十分位的正根嗎? x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1 、谟稍0.6至0.7范圍內(nèi)的x值所對(duì)應(yīng)的y值(見(jiàn)下表),你能說(shuō)出一元二次方程 =0精確到百分位的正根嗎? x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190 (3)請(qǐng)仿照上面的方法,求出一元二次方程 =0的另一個(gè)精確到十分位的根。 (4)請(qǐng)利用一元二次方程的求根公式解方程 =0,并檢驗(yàn)上面求出的近似解。 第一問(wèn)很簡(jiǎn)單,可以請(qǐng)一名同學(xué)來(lái)回答這個(gè)問(wèn)題。 生:一個(gè)根在(-2,-1)之間,另一個(gè)在(0,1)之間;根據(jù)上面我們得出的結(jié)論。 師:回答的很正確;我們知道圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程的根,所以我們可以通過(guò)觀看圖象就能說(shuō)出方程的兩個(gè)根。現(xiàn)在我們共同解答第(2)問(wèn)。 教師分析:我們知道方程的一個(gè)根在(0,1)之間,那么我們觀看(0,1)這個(gè)區(qū)間的圖像,y值是隨著x值的增大而不斷增大的,y值也是從負(fù)數(shù)過(guò)渡到正數(shù),而當(dāng)y=0時(shí)所對(duì)應(yīng)的x值就是方程的根,F(xiàn)在我們要求的是方程的近似解,那么同學(xué)們想一想,答案是什么呢? 生:通過(guò)列表可以看出,在(0.6,0.7)范圍內(nèi),y值有-0.04至0.19,如果方程精確到十分位的正根,x應(yīng)該是0.6。 類似的,我們得出方程精確到百分位的正根是0.62。 對(duì)于第三問(wèn),教師可以讓學(xué)生自己動(dòng)手解答,教師在下面巡視,觀察其中發(fā)現(xiàn)的問(wèn)題。 最后師生共同利用求根公式,驗(yàn)證求出的近似解。 教師總結(jié):我們發(fā)現(xiàn),當(dāng)二次函數(shù) (a0)的圖像與x軸有交點(diǎn)時(shí),根據(jù)圖像與x軸的交點(diǎn),就可以確定一元二次方程 的根在哪兩個(gè)連續(xù)整數(shù)之間。為了得到更精確的近似解,對(duì)在這兩個(gè)連續(xù)整數(shù)之間的x的值進(jìn)行細(xì)分,并求出相應(yīng)得y值,列出表格,這樣就可以得到一元二次方程 所要求的精確度的近似解。 、.練習(xí) 已知一個(gè)矩形的長(zhǎng)比寬多3m,面積為6 。求這個(gè)矩形的長(zhǎng)(精確到十分位)。 板書(shū)設(shè)計(jì): 二次函數(shù)的應(yīng)用(1) 一、導(dǎo)入 總結(jié): 二、新課講授 三、練習(xí) 第二課時(shí): 師:在我們的實(shí)際生活中你還遇到過(guò)哪些運(yùn)用二次函數(shù)的實(shí)例? 生:老師,我見(jiàn)過(guò)好多。如周長(zhǎng)固定時(shí)長(zhǎng)方形的面積與它的長(zhǎng)之間的關(guān)系:圓的面積與它的直徑之間的關(guān)系等。 師:好,看這樣一個(gè)問(wèn)題你能否解決: 活動(dòng)1:如圖34-10,張伯伯準(zhǔn)備利用現(xiàn)有的一面墻和40m長(zhǎng)的籬笆,把墻外的空地圍成四個(gè)相連且面積相等的矩形養(yǎng)兔場(chǎng)。 回答下面的問(wèn)題: 1.設(shè)每個(gè)小矩形一邊的長(zhǎng)為xm,試用x表示小矩形的另一邊的長(zhǎng)。 2.設(shè)四個(gè)小矩形的總面積為y ,請(qǐng)寫出用x表示y的函數(shù)表達(dá)式。 3.你能利用公式求出所得函數(shù)的圖像的頂點(diǎn)坐標(biāo),并說(shuō)出y的最大值嗎? 4.你能畫(huà)出這個(gè)函數(shù)的圖像,并借助圖像說(shuō)出y的最大值嗎? 學(xué)生思考,并小組討論。 解:已知周長(zhǎng)為40m,一邊長(zhǎng)為xm,看圖知,另一邊長(zhǎng)為 m。 由面積公式得 y= (x ) 化簡(jiǎn)得 y= 代入頂點(diǎn)坐標(biāo)公式,得頂點(diǎn)坐標(biāo)x=4,y=5。y的最大值為5。 畫(huà)函數(shù)圖像: 通過(guò)圖像,我們知道y的最大值為5。 師:通過(guò)上面這個(gè)例題,我們能總結(jié)出幾種求y的最值得方法呢? 生:兩種;一種是畫(huà)函數(shù)圖像,觀察最高(低)點(diǎn),可以得到函數(shù)的最值;另外一種可以利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算最值。 師:這位同學(xué)回答的很好,看來(lái)同學(xué)們是都理解了,也知道如何求函數(shù)的最值。 總結(jié):由此可以看出,在利用二次函數(shù)的圖像和性質(zhì)解決實(shí)際問(wèn)題時(shí),常常需要根據(jù)條件建立二次函數(shù)的表達(dá)式,在求最大(或最小)值時(shí),可以采取如下的方法: (1)畫(huà)出函數(shù)的圖像,觀察圖像的最高(或最低)點(diǎn),就可以得到函數(shù)的最大(或最小)值。 (2)依照二次函數(shù)的性質(zhì),判斷該二次函數(shù)的開(kāi)口方向,進(jìn)而確定它有最大值還是最小值;再利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算出函數(shù)的最大(或最小)值。 師:現(xiàn)在利用我們前面所學(xué)的知識(shí),解決實(shí)際問(wèn)題。 活動(dòng)2:如圖34-11,已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x, (1)AC=______; (2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)表達(dá)式為S=_____. (3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少? (4)總面積S取最大值或最小值時(shí),點(diǎn)C在AB的什么位置? 教師講解:二次函數(shù) 進(jìn)行配方為y= ,當(dāng)a0時(shí),拋物線開(kāi)口向上,此時(shí)當(dāng)x= 時(shí), ;當(dāng)a0時(shí),拋物線開(kāi)口向下,此時(shí)當(dāng)x= 時(shí), 。對(duì)于本題來(lái)說(shuō),自變量x的最值范圍受實(shí)際條件的制約,應(yīng)為02。此時(shí)y相應(yīng)的就有最大值和最小值了。通過(guò)畫(huà)出圖像,可以清楚地看到y(tǒng)的最大值和最小值以及此時(shí)x的取值情況。在作圖像時(shí)一定要準(zhǔn)確認(rèn)真,同時(shí)還要考慮到x的取值范圍。 解答過(guò)程(板書(shū)) 解:(1)當(dāng)BC=x時(shí),AC=2-x(02)。 (2)S△CDE= ,S△BFG= , 因此,S= + =2 -4x+4=2 +2, 畫(huà)出函數(shù)S= +2(02)的圖像,如圖34-4-3。 (3)由圖像可知:當(dāng)x=1時(shí), ;當(dāng)x=0或x=2時(shí), 。 (4)當(dāng)x=1時(shí),C點(diǎn)恰好在AB的中點(diǎn)上。 當(dāng)x=0時(shí),C點(diǎn)恰好在B處。 當(dāng)x=2時(shí),C點(diǎn)恰好在A處。 [教法]:在利用函數(shù)求極值問(wèn)題,一定要考慮本題的實(shí)際意義,弄明白自變量的取值范圍。在畫(huà)圖像時(shí),在自變量允許取得范圍內(nèi)畫(huà)。 練習(xí): 如圖,正方形ABCD的邊長(zhǎng)為4,P是邊BC上一點(diǎn),QPAP,并且交DC與點(diǎn)Q。 (1)Rt△ABP與Rt△PCQ相似嗎?為什么? (2)當(dāng)點(diǎn)P在什么位置時(shí),Rt△ADQ的面積最小?最小面積是多少? 小結(jié):利用二次函數(shù)的增減性,結(jié)合自變量的取值范圍,則可求某些實(shí)際問(wèn)題中的極值,求極值時(shí)可把 配方為y= 的形式。 板書(shū)設(shè)計(jì): 二次函數(shù)的應(yīng)用(2) 活動(dòng)1: 總結(jié)方法: 活動(dòng)2: 練習(xí): 小結(jié): 第三課時(shí): 我們這部分學(xué)習(xí)的是二次函數(shù)的應(yīng)用,在解決實(shí)際問(wèn)題時(shí),常常需要把二次函數(shù)問(wèn)題轉(zhuǎn)化為方程的問(wèn)題。 師:在日常生活中,有哪些量之間的關(guān)系是二次函數(shù)關(guān)系?大家觀看下面的圖片。 (幻燈片顯示交通事故、緊急剎車) 師:你知道兩輛車在行駛時(shí)為什么要保持一定的距離嗎? 學(xué)生思考,討論。 師:汽車在行駛中,由于慣性作用,剎車后還要向前滑行一段距離才能停住,這段距離叫做剎車距離。剎車距離是分析、處理道路交通事故的一個(gè)重要原因。 請(qǐng)看下面一個(gè)道路交通事故案例: 甲、乙兩車在限速為40km/h的濕滑彎道上相向而行,待望見(jiàn)對(duì)方。同時(shí)剎車時(shí)已經(jīng)晚了,兩車還是相撞了。事后經(jīng)現(xiàn)場(chǎng)勘查,測(cè)得甲車的剎車距離是12m,乙車的剎車距離超過(guò)10m,但小于12m。根據(jù)有關(guān)資料,在這樣的濕滑路面上,甲車的剎車距離S甲(m)與車速x(km/h)之間的關(guān)系為S甲=0.1x+0.01x2,乙車的剎車距離S乙(m)與車速x(km/h)之間的關(guān)系為S乙= 。 教師提問(wèn):1.你知道甲車剎車前的行駛速度嗎?甲車是否違章超速? 2.你知道乙車剎車前的行駛速度在什么范圍內(nèi)嗎?乙車是否違章超速? 學(xué)生思考!教師引導(dǎo)。 對(duì)于二次函數(shù)S甲=0.1x+0.01x2: (1)當(dāng)S甲=12時(shí),我們得到一元二次方程0.1x+0.01x2=12。請(qǐng)談?wù)勥@個(gè)一元二次方程這個(gè)一元二次方程的實(shí)際意義。 (2)當(dāng)S甲=11時(shí),不經(jīng)過(guò)計(jì)算,你能說(shuō)明兩車相撞的主要責(zé)任者是誰(shuí)嗎? (3)由乙車的剎車距離比甲車的剎車距離短,就一定能說(shuō)明事故責(zé)任者是甲車嗎?為什么? 生甲:我們能知道甲車剎車前的行駛速度,知道甲車的剎車距離,又知道剎車距離與車速的關(guān)系式,所以車速很容易求出,求得x=30km,小于限速40km/h,故甲車沒(méi)有違章超速。 生乙:同樣,知道乙車剎車前的行駛速度,知道乙車的剎車距離的取值范圍,又知道剎車距離與車速的關(guān)系式,求得x在40km/h與48km/h(不包含40km/h)之間?梢(jiàn)乙車違章超速了。 同學(xué)們,從這個(gè)事例當(dāng)中我們可以體會(huì)到,如果二次函數(shù)y= (a0)的某一函數(shù)值y=M。就可利用一元二次方程 =M,確定它所對(duì)應(yīng)得x值,這樣,就把二次函數(shù)與一元二次方程緊密地聯(lián)系起來(lái)了。 下面看下面的這道例題: 當(dāng)路況良好時(shí),在干燥的路面上,汽車的剎車距離s與車速v之間的關(guān)系如下表所示: v/(km/h) 40 60 80 100 120 s/m 2 4.2 7.2 11 15.6 (1)在平面直角坐標(biāo)系中描出每對(duì)(v,s)所對(duì)應(yīng)的點(diǎn),并用光滑的曲線順次連結(jié)各點(diǎn)。 (2)利用圖像驗(yàn)證剎車距離s(m)與車速v(km/h)是否有如下關(guān)系: (3)求當(dāng)s=9m時(shí)的車速v。 學(xué)生思考,親自動(dòng)手,提高學(xué)生自主學(xué)習(xí)的能力。 教師提問(wèn),學(xué)生回答正確答案,教師再進(jìn)行講解。 課上練習(xí): 某產(chǎn)品的成本是20元/件,在試銷階段,當(dāng)產(chǎn)品的售價(jià)為x元/件時(shí),日銷量為(200-x)件。 (1)寫出用售價(jià)x(元/件)表示每日的銷售利潤(rùn)y(元)的表達(dá)式。 (2)當(dāng)日銷量利潤(rùn)是1500元時(shí),產(chǎn)品的售價(jià)是多少?日銷量是多少件? (3)當(dāng)售價(jià)定為多少時(shí),日銷量利潤(rùn)最大?最大日銷量利潤(rùn)是多少? 課堂小結(jié):本節(jié)課主要是利用函數(shù)求極值的問(wèn)題,解決此類問(wèn)題時(shí),一定要考慮到本題的實(shí)際意義,弄明白自變量的取值范圍。在畫(huà)圖像時(shí),在自變量允許取的范圍內(nèi)畫(huà)。 板書(shū)設(shè)計(jì): 二次函數(shù)的應(yīng)用(3) 一、案例 二、例題 分析: 練習(xí): 總結(jié): 數(shù)學(xué)網(wǎng) 一、教學(xué)目標(biāo): 了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法. 二、教學(xué)重點(diǎn): 利用導(dǎo)數(shù)判斷一個(gè)函數(shù)在其定義區(qū)間內(nèi)的單調(diào)性. 教學(xué)難點(diǎn):判斷復(fù)合函數(shù)的.單調(diào)區(qū)間及應(yīng)用;利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的單調(diào)性. 三、教學(xué)過(guò)程 。ㄒ唬⿵(fù)習(xí)引入 1.增函數(shù)、減函數(shù)的定義 一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是增函數(shù).當(dāng)x1<x2時(shí),都有f(x1)>f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù). 2.函數(shù)的單調(diào)性 如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么就說(shuō)函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,這一區(qū)間叫做y=f(x)的單調(diào)區(qū)間. 在單調(diào)區(qū)間上增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的. 例1討論函數(shù)y=x2-4x+3的單調(diào)性. 解:取x1<x2,x1、x2∈R,取值 f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差 。(x1-x2)(x1+x2-4)變形 當(dāng)x1<x2<2時(shí),x1+x2-4<0,f(x1)>f(x2),定號(hào) ∴y=f(x)在(-∞, 2)單調(diào)遞減.判斷 當(dāng)2<x1<x2時(shí),x1+x2-4>0,f(x1)<f(x2), ∴y=f(x)在(2,+∞)單調(diào)遞增.綜上所述y=f(x)在(-∞, 2)單調(diào)遞減,y=f(x)在(2,+∞)單調(diào)遞增。 能否利用導(dǎo)數(shù)的符號(hào)來(lái)判斷函數(shù)單調(diào)性? 從容說(shuō)課 我們學(xué)習(xí)知識(shí)的目的就是為了應(yīng)用,如能把書(shū)本上學(xué)到的知識(shí)運(yùn)用到實(shí)際生活中,這就說(shuō)明確實(shí)把知識(shí)學(xué)好了,會(huì)用了 用函數(shù)觀點(diǎn)處理實(shí)際問(wèn)題的關(guān)鍵在于分析實(shí)際情境、建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問(wèn)題,教學(xué)時(shí)應(yīng)注意分析的過(guò)程,即將實(shí)際問(wèn)題置于已有知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以看成什么?讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考查實(shí)際問(wèn)題.同時(shí),在解決問(wèn)題的過(guò)程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想 此外,解決實(shí)際問(wèn)題時(shí).還要引導(dǎo)學(xué)生體會(huì)知識(shí)之間的聯(lián)系以及知識(shí)的綜合運(yùn)用 教學(xué)目標(biāo) (一)教學(xué)知識(shí)點(diǎn) 1.經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題的過(guò)程 2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).提高運(yùn)用代數(shù)方法解決問(wèn)題的能力 (二)能力訓(xùn)練要求 通過(guò)對(duì)反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問(wèn)題的能力 (三)情感與價(jià)值觀要求 經(jīng)歷將一些實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題的過(guò)程,初步學(xué)會(huì)從數(shù)學(xué)的角度提出問(wèn)題。理解問(wèn)題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問(wèn)題.發(fā)展應(yīng)用意識(shí),初步認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用 教學(xué)重點(diǎn) 用反比例函數(shù)的知識(shí)解決實(shí)際問(wèn)題 教學(xué)難點(diǎn) 如何從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題 教學(xué)方法 教師引導(dǎo)學(xué)生探索法 教學(xué)過(guò)程 、.創(chuàng)設(shè)問(wèn)題情境,引入新課 [師]有關(guān)反比例函數(shù)的表達(dá)式,圖象的特征我們都研究過(guò)了,那么,我們學(xué)習(xí)它們的目的是什么呢? [生]是為了應(yīng)用 [師]很好;學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問(wèn)題.究竟反比例函數(shù)能解決一些什么問(wèn)題呢?本節(jié)課我們就來(lái)學(xué)一學(xué) Ⅱ. 新課講解 某?萍夹〗M進(jìn)行野外考察,途中遇到片十幾米寬的爛泥濕地.為了安全、迅速通過(guò)這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù);你能解釋他們這樣做的道理嗎?當(dāng)人和木板對(duì)濕地的壓力一定時(shí)隨著木板面積S(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(Pa)將如何變化?如果人和木板對(duì)濕地地面的壓力合計(jì)600 N,那么 (1)用含S的'代數(shù)式表示p,p是S的反比例函數(shù)嗎?為什么? (2)當(dāng)木板畫(huà)積為 0.2 m2時(shí).壓強(qiáng)是多少? (3)如果要求壓強(qiáng)不超過(guò)6000 Pa,木板面積至少要多大? (4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象 (5)清利用圖象對(duì)(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流 [師]分析:首先要根據(jù)題意分析實(shí)際問(wèn)題中的兩個(gè)變量,然后看這兩個(gè)變量之間存在的關(guān)系,從而去分析它們之間的關(guān)系是否為反比例函數(shù)關(guān)系,若是則可用反比例函數(shù)的有關(guān)知識(shí)去解決問(wèn)題 請(qǐng)大家互相交流后回答 [生](1)由p=得p= p是S的反比例函數(shù),因?yàn)榻o定一個(gè)S的值.對(duì)應(yīng)的就有唯一的一個(gè)p值和它對(duì)應(yīng),根據(jù)函數(shù)定義,則p是S的反比例函數(shù) (2)當(dāng)S= 0.2 m2時(shí), p==3000(Pa) 當(dāng)木板面積為 0.2m2時(shí),壓強(qiáng)是3000Pa. (3)當(dāng)p=6000 Pa時(shí), S==0.1(m2) 如果要求壓強(qiáng)不超過(guò)6000 Pa,木板面積至少要 0.1 m2 (4)圖象如下: (5)(2)是已知圖象上某點(diǎn)的橫坐標(biāo)為0.2,求該點(diǎn)的縱坐標(biāo);(3)是已知圖象上點(diǎn)的縱坐標(biāo)不大于6000,求這些點(diǎn)所處的位置及它們橫坐標(biāo)的取值范圍 [師]這位同學(xué)回答的很好,下面我要提一個(gè)問(wèn)題,大家知道反比例函數(shù)的圖象是兩支雙曲線、它們要么位于第一、三象限,要么位于第二、四象限,從(1)中已知p=>0,所以圖象應(yīng)位于第一、三象限,為什么這位同學(xué)只畫(huà)出了一支曲線,是不是另一支曲線丟掉了呢?還是因?yàn)轭}中只給出了第一象限呢? [生]第三象限的曲線不存在,因?yàn)檫@是實(shí)際問(wèn)題,S不可能取負(fù)數(shù),所以第三象限的曲線不存在 [師]很好,那么在(1)中是不是應(yīng)該有條件限制呢? [生]是,應(yīng)為p= (S>0). 做一做 1、蓄電池的電壓為定值,使用此電源時(shí),電流I(A)與電阻R(Ω)之間的函數(shù)關(guān)系如下圖; (1)蓄電池的電壓是多少?你能寫出這一函數(shù)的表達(dá)式嗎? (2)完成下表,并回答問(wèn)題:如果以此蓄電池為電源的用電器限制電流不得超過(guò) 10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)? [師]從圖形上來(lái)看,I和R之間可能是反比例函數(shù)關(guān)系.電壓U就相當(dāng)于反比例函數(shù)中的k.要寫出函數(shù)的表達(dá)式,實(shí)際上就是確定k(U),只需要一個(gè)條件即可,而圖中已給出了一個(gè)點(diǎn)的坐標(biāo),所以這個(gè)問(wèn)題就解決了,填表實(shí)際上是已知自變量求函數(shù)值. [生]解:(1)由題意設(shè)函數(shù)表達(dá)式為I= ∵A(9,4)在圖象上, ∴U=IR=36 ∴表達(dá)式為I= 蓄電池的電壓是36伏 (2)表格中從左到右依次是:12,9,7.2,6,4.5,3.6 電源不超過(guò) 10 A,即I最大為 10 A,代入關(guān)系式中得R=3.6,為最小電阻,所以用電器的可變電阻應(yīng)控制在R≥3.6這個(gè)范圍內(nèi) 2、如下圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象相交于A,B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(,2) (1)分別寫出這兩個(gè)函數(shù)的表達(dá)式: (2)你能求出點(diǎn)B的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流 [師]要求這兩個(gè)函數(shù)的表達(dá)式,只要把A點(diǎn)的坐標(biāo)代入即可求出k1,k2,求點(diǎn)B的 坐標(biāo)即求y=k1x與y=的交點(diǎn) [生]解:(1)∵A(,2)既在y=k1x圖象上,又在y=的圖象上 ∴k1=2,2= ∴k1=2,k2=6 ∴表達(dá)式分別為y=2x,y= ∴x2=3 ∴x=± 當(dāng)x= ?時(shí),y= ?2 ∴B(?,?2) 、.課堂練習(xí) 1.某蓄水池的排水管每時(shí)排水 8 m3,6 h可將滿池水全部排空 (1)蓄水池的容積是多少? (2)如果增加排水管,使每時(shí)的排水量達(dá)到Q(m3),那么將滿池水排空所需的時(shí)間t(h)將如何變化? (3)寫出t與Q之間的關(guān)系式; (4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為多少? (5)已知排水管的最大排水量為每時(shí) 12m3,那么最少多長(zhǎng)時(shí)間可將滿池水全部排空? 解:(1)8×6=48(m3) 所以蓄水池的容積是 48 m3 (2)因?yàn)樵黾优潘埽姑繒r(shí)的排水量達(dá)到Q(m3),所以將滿池水排空所需的時(shí)間t(h)將減少. (3)t與Q之間的關(guān)系式為t= (4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為=9.6(m3) (5)已知排水管的最大排水量為每時(shí) 12m3,那么最少要=4小時(shí)可將滿池水全部排空. 、簟⒄n時(shí)小結(jié) 節(jié)課我們學(xué)習(xí)了反比例函數(shù)的應(yīng)用.具體步驟是:認(rèn)真分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而用反比例函數(shù)的有關(guān)知識(shí)解決實(shí)際問(wèn)題. 、跽n后作業(yè) 習(xí)題5.4. 板書(shū)設(shè)計(jì) § 5.3反比例函數(shù)的應(yīng)用 一、1.例題講解 2.做一做 二、課堂練習(xí) 三、課時(shí)小節(jié) 四、課后作業(yè)(習(xí)題5.4) 【《函數(shù)的應(yīng)用》教案】相關(guān)文章: 數(shù)學(xué)教案-對(duì)數(shù)函數(shù)的應(yīng)用 教案09-29 函數(shù)應(yīng)用數(shù)學(xué)教案設(shè)計(jì)10-10 數(shù)學(xué)教案-指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用09-29 《二次函數(shù)》應(yīng)用教案設(shè)計(jì)02-02 反比例函數(shù)的應(yīng)用教案設(shè)計(jì)10-10 初二數(shù)學(xué):函數(shù)應(yīng)用教案設(shè)計(jì)參考10-10 函數(shù)教案12-16 對(duì)數(shù)函數(shù)的應(yīng)用 教案 - 初中數(shù)學(xué)第一冊(cè)教案09-29《函數(shù)的應(yīng)用》教案6
《函數(shù)的應(yīng)用》教案7
《函數(shù)的應(yīng)用》教案8
《函數(shù)的應(yīng)用》教案9
《函數(shù)的應(yīng)用》教案10
《函數(shù)的應(yīng)用》教案11
《函數(shù)的應(yīng)用》教案12
《函數(shù)的應(yīng)用》教案13
《函數(shù)的應(yīng)用》教案14
《函數(shù)的應(yīng)用》教案15