亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

數(shù)學高一函數(shù)知識點整理

時間:2024-07-24 23:02:13 總結 我要投稿
  • 相關推薦

數(shù)學高一函數(shù)知識點整理

  在我們上學期間,大家都背過各種知識點吧?知識點就是學習的重點。哪些知識點能夠真正幫助到我們呢?下面是小編收集整理的數(shù)學高一函數(shù)知識點整理,希望能夠幫助到大家。

數(shù)學高一函數(shù)知識點整理

  1.函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

  (2)若f(x)是奇函數(shù),0在其定義域內,則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調區(qū)間內有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內有相反的單調性;

  2.復合函數(shù)的有關問題

  (1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

  (2)復合函數(shù)的單調性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對稱性)

  (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;

  4.函數(shù)的周期性

  (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

  (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

【數(shù)學高一函數(shù)知識點整理】相關文章:

高一函數(shù)知識點總結07-12

高一數(shù)學知識點總結10-06

高一數(shù)學知識點總結09-02

高一數(shù)學下知識點總結06-09

高一數(shù)學全部集合知識點10-23

高一必修數(shù)學知識點總結08-05

高一數(shù)學對數(shù)的知識點歸納10-26

二次函數(shù)的知識點總結05-15

高一數(shù)學必修四知識點推薦10-17

高一數(shù)學必修一知識點總結05-19