- 相關(guān)推薦
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,它可以提升我們發(fā)現(xiàn)問題的能力,讓我們來(lái)為自己寫一份總結(jié)吧。如何把總結(jié)做到重點(diǎn)突出呢?以下是小編整理的高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)1
第一章:解三角形
1、正弦定理:在C中,a、b、c分別為角、、C的對(duì)邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經(jīng)常用在有三角函數(shù)的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.
3、三角形面積公式:SC
4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222
5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.
6、設(shè)a、b、c是C的角、、C的對(duì)邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.
第二章:數(shù)列
1、數(shù)列:按照一定順序排列著的一列數(shù).
2、數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).
3、有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列.
4、無(wú)窮數(shù)列:項(xiàng)數(shù)無(wú)限的數(shù)列.
5、遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列.
6、遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列.
7、常數(shù)列:各項(xiàng)相等的數(shù)列.
8、擺動(dòng)數(shù)列:從第2項(xiàng)起,有些項(xiàng)大于它的前一項(xiàng),有些項(xiàng)小于它的前一項(xiàng)的數(shù)列.
9、數(shù)列的通項(xiàng)公式:表示數(shù)列an的第n項(xiàng)與序號(hào)n之間的關(guān)系的公式.
10、數(shù)列的遞推公式:表示任一項(xiàng)an與它的前一項(xiàng)an1(或前幾項(xiàng))間的關(guān)系的公式.
11、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等差數(shù)列,這個(gè)常數(shù)稱為等差數(shù)列的公差.
12、由三個(gè)數(shù)a,,b組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列,則稱為a與b的等差中項(xiàng).若bac2,則稱b為a與c的等差中項(xiàng).
13、若等差數(shù)列an的首項(xiàng)是a1,公差是d,則ana1n1d.通項(xiàng)公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;
14、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq;下角標(biāo)成等差數(shù)列的項(xiàng)仍是等差數(shù)列;連續(xù)m項(xiàng)和構(gòu)成的數(shù)列成等差數(shù)列。
15、等差數(shù)列的前n項(xiàng)和的公式:①Snna1an2;②Snna1nn12d.
16、等差數(shù)列的前n項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項(xiàng)數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).
17、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比.
18、在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項(xiàng).若G2ab,則稱G為a與b的等比中項(xiàng).
19、若等比數(shù)列an的首項(xiàng)是a1,公比是q,則ana1q.
20、通項(xiàng)公式的變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.
21、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq;下角標(biāo)成等差數(shù)列的項(xiàng)仍是等比數(shù)列;連續(xù)m2項(xiàng)和構(gòu)成的數(shù)列成等比數(shù)列。
22、等比數(shù)列an的前n項(xiàng)和的公式:Sna11qnaaq.1nq11q1qq1時(shí),Sna11qa11qq,即常數(shù)項(xiàng)與q項(xiàng)系數(shù)互為相反數(shù)。
23、等比數(shù)列的前n項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數(shù)列.
24、an與Sn的關(guān)系:anSnSn1S1n2n1
一些方法:
一、求通項(xiàng)公式的方法:
1、由數(shù)列的前幾項(xiàng)求通項(xiàng)公式:待定系數(shù)法
、偃粝噜弮身(xiàng)相減后為同一個(gè)常數(shù)設(shè)為anknb,列兩個(gè)方程求解;
、谌粝噜弮身(xiàng)相減兩次后為同一個(gè)常數(shù)設(shè)為anan2bnc,列三個(gè)方程求解;③若相鄰兩項(xiàng)相減后相除后為同一個(gè)常數(shù)設(shè)為anaq
2、由遞推公式求通項(xiàng)公式:
、偃艋(jiǎn)后為an1and形式,可用等差數(shù)列的通項(xiàng)公式代入求解;②若化簡(jiǎn)后為an1anf(n),形式,可用疊加法求解;
③若化簡(jiǎn)后為an1anq形式,可用等比數(shù)列的通項(xiàng)公式代入求解;
、苋艋(jiǎn)后為an1kanb形式,則可化為(an1x)k(anx),從而新數(shù)列{anx}是等比數(shù)列,用等比數(shù)列求解{anx}的通項(xiàng)公式,再反過來(lái)求原來(lái)那個(gè)。(其中x是用待定系數(shù)法來(lái)求得)3、由求和公式求通項(xiàng)公式:
、賏1S1②anSnSn1③檢驗(yàn)a1是否滿足an,若滿足則為an,不滿足用分段函數(shù)寫。
4、其他
。1)anan1fn形式,fn便于求和,方法:迭加;
例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數(shù),列兩個(gè)方程求解;
n4n1(2)anan12anan1形式,同除以anan1,構(gòu)造倒數(shù)為等差數(shù)列;
anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數(shù)列。anan1(3)anqan1m形式,q1,方法:構(gòu)造:anxqan1x為等比數(shù)列;
例如:an2an12,通過待定系數(shù)法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構(gòu)造:anxnyqan1xn1y為等比數(shù)列;(5)anqan1p形式,同除p,轉(zhuǎn)化為上面的幾種情況進(jìn)行構(gòu)造;因?yàn)閍nqan1pn,則anpnqan1ppn11,若qp1轉(zhuǎn)化為(1)的方法,若不為1,轉(zhuǎn)化為(3)的方法
二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項(xiàng)公式求臨界項(xiàng)法)
①若②若ak0,則Sn有最大值,當(dāng)n=k時(shí)取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當(dāng)n=k時(shí)取到的最大值k滿足d0a0k1
三、數(shù)列求和的方法:
、侬B加法:倒序相加,具備等差數(shù)列的`相關(guān)特點(diǎn)的,倒序之后和為定值;
、阱e(cuò)位相減法:適用于通項(xiàng)公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:an2n13;n③分式時(shí)拆項(xiàng)累加相約法:適用于分式形式的通項(xiàng)公式,把一項(xiàng)拆成兩個(gè)或多個(gè)的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項(xiàng)內(nèi)含有多部分的拆開分別求和法:適用于通項(xiàng)中能分成兩個(gè)或幾個(gè)可以方便求和的部分,如:an2n1等;
四、綜合性問題中
①等差數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為aq和aq類型,這樣可以相乘約掉。
第三章:不等式
1、ab0ab;ab0ab;ab0ab.比較兩個(gè)數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。
2、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.
3、一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.
4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式b4ac201二次函數(shù)yaxbxc2a0的圖象有兩個(gè)相異實(shí)數(shù)根一元二次方程axbxc02有兩個(gè)相等實(shí)數(shù)根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒有實(shí)數(shù)根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2
5、二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.
6、二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組.
7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對(duì)x,y,所有這樣的有序數(shù)對(duì)x,y構(gòu)成的集合.
8、在平面直角坐標(biāo)系中,已知直線xyC0,坐標(biāo)平面內(nèi)的點(diǎn)x0,y0.①若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的上方.②若0,x0y0C0,則點(diǎn)x0,y0在直線xyC0的下方.
9、在平面直角坐標(biāo)系中,已知直線xyC0.①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線xyC0上方的區(qū)域.
10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量x,y的解析式.線性目標(biāo)函數(shù):目標(biāo)函數(shù)為x,y的一次解析式.線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.
11、設(shè)a、b是兩個(gè)正數(shù),則ab稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).
12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.
13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.
14、極值定理:設(shè)x、y都為正數(shù),則有s(和為定值),則當(dāng)xy時(shí),積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當(dāng)xy時(shí),和xy取得最小值2p.
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)2
集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
A?① 任何一個(gè)集合是它本身的子集。A
B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A
C?C ,那么 A?B, B?③如果 A
A 那么A=B?B 同時(shí) B?④ 如果A
3. 不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
集合的'運(yùn)算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.
4、全集與補(bǔ)集
(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
A}?S且 x? x?記作: CSA 即 CSA ={x
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)3
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
解析式
頂點(diǎn)坐標(biāo)
對(duì)稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的'自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)4
不等式
不等關(guān)系
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式
、贂(huì)從實(shí)際情境中抽象出一元二次不等式模型.
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
、蹠(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題
①會(huì)從實(shí)際情境中抽象出二元一次不等式組.
、诹私舛淮尾坏仁降.幾何意義,能用平面區(qū)域表示二元一次不等式組.
③會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
、倭私饣静坏仁降淖C明過程.
、跁(huì)用基本不等式解決簡(jiǎn)單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)5
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α
理解:
(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,體現(xiàn)了直線對(duì)x軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
、蹆A斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)
當(dāng)a≠0時(shí),傾斜角為90度,即與X軸垂直
兩角和與差的三角函數(shù):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角和的'三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中
sint=B/(A2+B2)^(1/2)
cost=A/(A2+B2)^(1/2)
tant=B/A
Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan(2α)=2tanα/[1-tan2(α)]
三倍角公式:
sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tana·tan(π/3+a)·tan(π/3-a)
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin2(α)=(1-cos(2α))/2=versin(2α)/2
cos2(α)=(1+cos(2α))/2=covers(2α)/2
tan2(α)=(1-cos(2α))/(1+cos(2α))
萬(wàn)能公式:
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=2tan(α/2)/[1-tan2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
二面角
(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)6
解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問題.
(2)應(yīng)用
能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題.
數(shù)列
(1)數(shù)列的'概念和簡(jiǎn)單表示法
、倭私鈹(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
、诹私鈹(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
、倮斫獾炔顢(shù)列、等比數(shù)列的概念.
②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
、勰茉诰唧w的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題.
、芰私獾炔顢(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)7
集合的運(yùn)算
1。交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。
記作AB(讀作A交B),即AB={x|xA,且xB}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的`并集。記作:AB(讀作A并B),即AB={x|xA,或xB}。
3、交集與并集的性質(zhì):AA=A,A=,AB=BA,AA=A,A=A,AB=BA。
4、全集與補(bǔ)集
(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):
、臗U(CUA)=A
⑵(CUA)
、(CUA)A=U
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)8
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的'概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應(yīng)用】
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)9
【基本初等函數(shù)】
一、指數(shù)函數(shù)
。ㄒ唬┲笖(shù)與指數(shù)冪的運(yùn)算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的.負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
。ǘ┲笖(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。
2、指數(shù)函數(shù)的圖象和性質(zhì)
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)10
集合的運(yùn)算
運(yùn)算類型交 集并 集補(bǔ) 集
定義域 R定義域 R
值域>0值域>0
在R上單調(diào)遞增在R上單調(diào)遞減
非奇非偶函數(shù)非奇非偶函數(shù)
函數(shù)圖象都過定點(diǎn)(0,1)函數(shù)圖象都過定點(diǎn)(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
。1)在[a,b]上, 值域是 或 ;
。2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;
。3)對(duì)于指數(shù)函數(shù) ,總有 ;
二、對(duì)數(shù)函數(shù)
。ㄒ唬⿲(duì)數(shù)
1.對(duì)數(shù)的概念:
一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)
說明:○1 注意底數(shù)的限制 ,且 ;
○2 ;
○3 注意對(duì)數(shù)的書寫格式.
兩個(gè)重要對(duì)數(shù):
○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;
○2 自然對(duì)數(shù):以無(wú)理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .
指數(shù)式與對(duì)數(shù)式的互化
冪值 真數(shù)
。 N = b
底數(shù)
指數(shù) 對(duì)數(shù)
。ǘ⿲(duì)數(shù)的運(yùn)算性質(zhì)
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .
。3)、重要的公式 ①、負(fù)數(shù)與零沒有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式
。ǘ⿲(duì)數(shù)函數(shù)
1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).
注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).
○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .
2、對(duì)數(shù)函數(shù)的性質(zhì):
a>10 定義域x>0定義域x>0 值域?yàn)镽值域?yàn)镽 在R上遞增在R上遞減 函數(shù)圖象都過定點(diǎn)(1,0)函數(shù)圖象都過定點(diǎn)(1,0) 。ㄈ﹥绾瘮(shù) 1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù). 2、冪函數(shù)性質(zhì)歸納. 。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1); (2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸; (3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無(wú)限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無(wú)限地逼近 軸正半軸. 第四章 函數(shù)的應(yīng)用 一、方程的根與函數(shù)的零點(diǎn) 1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。 即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn). 3、函數(shù)零點(diǎn)的`求法: ○1 (代數(shù)法)求方程 的實(shí)數(shù)根; ○2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn). 4、二次函數(shù)的零點(diǎn): 二次函數(shù) . 。1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn). 。2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn). 。3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn). 5.函數(shù)的模型 高一數(shù)學(xué)必修一知識(shí)點(diǎn) 指數(shù)函數(shù) (一)指數(shù)與指數(shù)冪的運(yùn)算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand). 當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。 注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí), 2.分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定: 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義 指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪. 3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì) (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) 高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理 空間幾何體表面積體積公式: 1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高) 2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高, 3、a-邊長(zhǎng),S=6a2,V=a3 4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc 5、棱柱S-h-高V=Sh 6、棱錐S-h-高V=Sh/3 7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3 8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6 9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h 10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2) 11、r-底半徑h-高V=πr^2h/3 12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6 14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6 16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4 17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形) 人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理 1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征 (1)棱柱: 定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。 幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等 表示:用各頂點(diǎn)字母,如五棱錐 幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。 (3)棱臺(tái): 定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等 表示:用各頂點(diǎn)字母,如五棱臺(tái) 幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn) (4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。 幾何特征:①底面是全等的`圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。 幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。 (6)圓臺(tái): 定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。 (7)球體: 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。 2、空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下) 注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度; 俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度; 側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。 3、空間幾何體的直觀圖——斜二測(cè)畫法 斜二測(cè)畫法特點(diǎn): 、僭瓉(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變; ②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。 棱錐 棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐 棱錐的的性質(zhì): (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形 (2)平行于底面的.截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方 正棱錐 正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。 正棱錐的性質(zhì): (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。 (3)多個(gè)特殊的直角三角形 esp: a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。 b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。 1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問題;以向量知識(shí)為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。 2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。 3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。 4.立體幾何知識(shí):20xx年已經(jīng)變得簡(jiǎn)單,20xx年難度依然不大,基本的三視圖的.考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問題,都是重點(diǎn)考查內(nèi)容。 5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。 6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。 7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。 【公式一】 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 【公式二】 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 【公式三】 任意角α與-α的三角函數(shù)值之間的關(guān)系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 【公式四】 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 【公式五】 利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 【公式六】 π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 【高一數(shù)學(xué)函數(shù)復(fù)習(xí)資料】 一、定義與定義式: 自變量x和因變量y有如下關(guān)系: y=kx+b 則此時(shí)稱y是x的一次函數(shù)。 特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。 即:y=kx(k為常數(shù),k≠0) 二、一次函數(shù)的性質(zhì): 的.變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k 即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù)) 當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。 三、一次函數(shù)的圖像及性質(zhì): 作法與圖形:通過如下3個(gè)步驟 (1)列表; (2)描點(diǎn); (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn)) 性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。 ,b與函數(shù)圖像所在象限: 當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大; 當(dāng)k 當(dāng)b>0時(shí),直線必通過一、二象限; 當(dāng)b=0時(shí),直線通過原點(diǎn) 當(dāng)b 特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。 這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k 四、確定一次函數(shù)的表達(dá)式: 已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。 (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。 (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……② (3)解這個(gè)二元一次方程,得到k,b的值。 (4)最后得到一次函數(shù)的表達(dá)式。 五、一次函數(shù)在生活中的應(yīng)用: 當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。 當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。 六、常用公式:(不全,希望有人補(bǔ)充) 求函數(shù)圖像的k值:(y1-y2)/(x1-x2) 求與x軸平行線段的中點(diǎn):|x1-x2|/2 求與y軸平行線段的中點(diǎn):|y1-y2|/2 求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和) 知識(shí)點(diǎn)1 一、集合有關(guān)概念 1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。 2、集合的中元素的三個(gè)特性: 1、元素的確定性; 2、元素的互異性; 3、元素的無(wú)序性 說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。 。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。 。3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。 3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋} 1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5} 2、集合的表示方法:列舉法與描述法。 注意啊:常用數(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A 列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。 描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形} ②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2} 4、集合的分類: 1、有限集含有有限個(gè)元素的集合 2、無(wú)限集含有無(wú)限個(gè)元素的集合 3、空集不含任何元素的集合例:{x|x2=—5} 知識(shí)點(diǎn)2 I、定義與定義表達(dá)式 一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、) 則稱y為x的二次函數(shù)。 二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。 II、二次函數(shù)的三種表達(dá)式 一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) 頂點(diǎn)式:y=a(x—h)^2+k[拋物線的頂點(diǎn)P(h,k)] 交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線] 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a III、二次函數(shù)的圖像 在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。 IV、拋物線的性質(zhì) 1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=—b/2a。對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。 特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0) 2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為 P(—b/2a,(4ac—b^2)/4a) 當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。 3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。 當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。 |a|越大,則拋物線的開口越小。 知識(shí)點(diǎn)3 1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線 x=—b/2a。 對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。 特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0) 2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為 P(—b/2a,(4ac—b’2)/4a) 當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。 3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。 當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。 |a|越大,則拋物線的開口越小。 4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。 當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。 5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。 拋物線與y軸交于(0,c) 6、拋物線與x軸交點(diǎn)個(gè)數(shù) Δ=b’2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。 Δ=b’2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。 Δ=b’2—4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a) 知識(shí)點(diǎn)4 對(duì)數(shù)函數(shù) 對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的.反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。 右圖給出對(duì)于不同大小a所表示的函數(shù)圖形: 可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。 。1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。 。2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。 。3)函數(shù)總是通過(1,0)這點(diǎn)。 。4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。 (5)顯然對(duì)數(shù)函數(shù)。 知識(shí)點(diǎn)5 方程的根與函數(shù)的零點(diǎn) 1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。 3、函數(shù)零點(diǎn)的求法: 。1)(代數(shù)法)求方程的實(shí)數(shù)根; 。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。 4、二次函數(shù)的零點(diǎn): 。1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。 。2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。 。3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。 【高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 高一政治必修一知識(shí)點(diǎn)總結(jié)09-06 高一數(shù)學(xué)必修四知識(shí)點(diǎn)推薦12-31 高一歷史必修二知識(shí)點(diǎn)總結(jié)01-17 高一政治必修2知識(shí)點(diǎn)總結(jié)09-06 人教版高一英語(yǔ)必修一知識(shí)點(diǎn)總結(jié)09-25 高一物理必修一知識(shí)點(diǎn)總結(jié)12-22 高一化學(xué)必修一知識(shí)點(diǎn)總結(jié)02-04高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)11
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)12
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)13
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)14
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)15