高中數(shù)學(xué)備課教案(精選10篇)
作為一無名無私奉獻(xiàn)的教育工作者,常常需要準(zhǔn)備教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那要怎么寫好教案呢?以下是小編幫大家整理的高中數(shù)學(xué)備課教案,僅供參考,歡迎大家閱讀。
高中數(shù)學(xué)備課教案 1
一、教學(xué)目標(biāo)
知識與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識。
二、教學(xué)重點、難點:
教學(xué)重點:
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點:
終邊相同角的集合的表示;區(qū)間角的`集合的書寫。
三、教學(xué)過程
(一)導(dǎo)入新課
1、回顧角的定義
、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
、诮堑拿Q:
注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角。
⑤練習(xí):請說出角α、β、γ各是多少度?
2、象限角的概念:
、俣x:若將角頂點與原點重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學(xué)備課教案 2
教學(xué)目的:
知識目標(biāo):
了解在柱坐標(biāo)系、球坐標(biāo)系中刻畫空間中點的位置的方法
能力目標(biāo):
了解柱坐標(biāo)、球坐標(biāo)與直角坐標(biāo)之間的變換公式。
德育目標(biāo):
通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。
教學(xué)重點:
體會與空間直角坐標(biāo)系中刻畫空間點的位置的方法的區(qū)別和聯(lián)系
教學(xué)難點:
利用它們進(jìn)行簡單的數(shù)學(xué)應(yīng)用
授課類型:
新授課
教學(xué)模式:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
教具:
多媒體、實物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
情境:我們用三個數(shù)據(jù)來確定衛(wèi)星的位置,即衛(wèi)星到地球中心的距離、經(jīng)度、緯度。
問題:如何在空間里確定點的位置?有哪些方法?
學(xué)生回顧
在空間直角坐標(biāo)系中刻畫點的位置的方法_科_網(wǎng)]
極坐標(biāo)的意義以及極坐標(biāo)與直角坐標(biāo)的互化原理
二、講解新課:
1、球坐標(biāo)系
設(shè)P是空間任意一點,在oxy平面的射影為Q,連接OP,記|OP|=,OP與OZ軸正向所夾的角為,P在oxy平面的射影為Q,Ox軸按逆時針方向旋轉(zhuǎn)到OQ時所轉(zhuǎn)過的最小正角為,點P的位置可以用有序數(shù)組表示,我們把建立上述對應(yīng)關(guān)系的坐標(biāo)系叫球坐標(biāo)系(或空間極坐標(biāo)系)
有序數(shù)組叫做點P的球坐標(biāo),其中≥0,0≤≤,0≤<2。
空間點P的直角坐標(biāo)與球坐標(biāo)之間的變換關(guān)系為:
2、柱坐標(biāo)系
設(shè)P是空間任意一點,在oxy平面的射影為Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示點在
平面oxy上的極坐標(biāo),點P的位置可用有序數(shù)組(ρ,θ,Z)表示把建立上述對應(yīng)關(guān)系的坐標(biāo)系叫做柱坐標(biāo)系
有序數(shù)組(ρ,θ,Z)叫點P的柱坐標(biāo),其中ρ≥0,0≤θ<2π,z∈R
空間點P的直角坐標(biāo)(x,y,z)與柱坐標(biāo)(ρ,θ,Z)之間的變換關(guān)系為:
3、數(shù)學(xué)應(yīng)用
例1建立適當(dāng)?shù)?球坐標(biāo)系,表示棱長為1的正方體的頂點.
變式訓(xùn)練
建立適當(dāng)?shù)闹鴺?biāo)系,表示棱長為1的正方體的頂點.
例2.將點M的球坐標(biāo)化為直角坐標(biāo).
變式訓(xùn)練
1.將點M的直角坐標(biāo)化為球坐標(biāo).
2.將點M的柱坐標(biāo)化為直角坐標(biāo).
3.在直角坐標(biāo)系中點>0)的球坐標(biāo)是什么?
例3.球坐標(biāo)滿足方程r=3的點所構(gòu)成的圖形是什么?并將此方程化為直角坐標(biāo)方程.
變式訓(xùn)練
標(biāo)滿足方程=2的點所構(gòu)成的圖形是什么?
例4.已知點M的柱坐標(biāo)為點N的球坐標(biāo)為求線段MN的長度.
思考:
在球坐標(biāo)系中,集合表示的圖形的體積為多少?
三、鞏固與練習(xí)
四、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.球坐標(biāo)系的作用與規(guī)則;
2.柱坐標(biāo)系的作用與規(guī)則。
五、課后作業(yè):教材P15頁12,13,14,15,16
六、課后反思:本節(jié)內(nèi)容與平面直角坐標(biāo)和極坐標(biāo)結(jié)合起來,學(xué)生容易理解。但以后少用,可能會遺忘很快。需要定期調(diào)回學(xué)生的記憶。
高中數(shù)學(xué)備課教案 3
一、教學(xué)目標(biāo)
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過程與方法
主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
(1)提高學(xué)生空間想象力
(2)體會三視圖的作用
二、教學(xué)重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動手實踐、討論、類比
2.教學(xué)用具:實物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的`三視圖嗎?
(3)三視圖對于認(rèn)識空間幾何體有何作用?你有何體會?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。
4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
(四)歸納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
高中數(shù)學(xué)備課教案 4
教學(xué)目標(biāo):
1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.
2.會求一些簡單函數(shù)的反函數(shù).
3.在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識.
4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。
教學(xué)重點:求反函數(shù)的方法.
教學(xué)難點:反函數(shù)的概念.
教學(xué)過程:
教學(xué)活動
設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課
1.復(fù)習(xí)提問
、俸瘮(shù)的概念
②y=f(x)中各變量的意義
2.同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.
3.板書課題
由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.
二、實例分析,組織探究
1.問題組一:
(用投影給出函數(shù)與;與()的圖象)
(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱.是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)
(2)由,已知y能否求x?
(3)是否是一個函數(shù)?它與有何關(guān)系?
(4)與有何聯(lián)系?
2.問題組二:
(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?
3.滲透反函數(shù)的概念.
(教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)
從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力.
通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).
三、師生互動,歸納定義
1.(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C.我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成.
2.引導(dǎo)分析:
1)反函數(shù)也是函數(shù);
2)對應(yīng)法則為互逆運算;
3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號f;
7)交換變量x、y的原因.
3.兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系
(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)
4.函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值 域
C
A
四、應(yīng)用解題,總結(jié)步驟
1.(投影例題)
【例1】求下列函數(shù)的反函數(shù)
(1)y=3x-1 (2)y=x 1
【例2】求函數(shù)的反函數(shù).
(教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟.)
2.總結(jié)求函數(shù)反函數(shù)的步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫出反函數(shù)的定義域.
(簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?
(2)的反函數(shù)是________.
(3)(x<0)的反函數(shù)是__________.
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進(jìn)而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù).在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握.
通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解.
通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.
題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.
五、鞏固強化,評價反饋
1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.
(讓學(xué)生談一下本節(jié)課的'學(xué)習(xí)體會,教師適時點撥)
進(jìn)一步強化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度.具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性."問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂.
六、作業(yè)
習(xí)題2.4第1題,第2題
進(jìn)一步鞏固所學(xué)的知識.
教學(xué)設(shè)計說明
"問題是數(shù)學(xué)的心臟".一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進(jìn)而又通過若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.
反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用.通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。
高中數(shù)學(xué)備課教案 5
一、教學(xué)目標(biāo)
(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
二、教學(xué)重點難點:
重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.
三、教學(xué)過程
1.新課導(dǎo)入
在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點是邏輯性強,特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)
學(xué)生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學(xué)議論結(jié)果,答案是肯定的)
教師提問:什么是命題?
(學(xué)生進(jìn)行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學(xué)的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學(xué)生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?
(片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.
對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應(yīng)于集合 ,則命題非 就對應(yīng)著集合 在全集 中的補集 .
命題可分為簡單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
(4)命題的表示:用 , , , ,……來表示.
(教師根據(jù)學(xué)生回答的`情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)
我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .
在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
(1) ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)
例3 寫出下表中各給定語的否定語(用課件打出來).
若給定語為
等于
大于
是
都是
至多有一個
至少有一個
至多有個
其否定語分別為
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個”的否定語是“至少有兩個”;
“至少有一個”的否定語是“一個都沒有”;
“至多有 個”的否定語是“至少有 個”.
(如果時間寬裕,可讓學(xué)生討論后得出結(jié)論.)
置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時間作適當(dāng)?shù)谋嫖雠c展開.)
4.課堂練習(xí):第26頁練習(xí)1
5.課外作業(yè):第29頁習(xí)題1.6
高中數(shù)學(xué)備課教案 6
教學(xué)目的:掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題
教學(xué)重點:圓的標(biāo)準(zhǔn)方程及有關(guān)運用
教學(xué)難點:標(biāo)準(zhǔn)方程的靈活運用
教學(xué)過程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識,鞏固練習(xí)
練習(xí):⒈說出下列圓的方程
、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
、牛▁-2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系
⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的.數(shù)學(xué)方法)
練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)備課教案 7
一、教學(xué)目標(biāo)
【知識與技能】
掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【過程與方法】
經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。
【情感態(tài)度價值觀】
在猜想計算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點
【教學(xué)重點】
三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【教學(xué)難點】
探究三角函數(shù)的.單調(diào)性以及三角函數(shù)值的取值范圍過程。
三、教學(xué)過程
。ㄒ唬┮胄抡n
提出問題:如何研究三角函數(shù)的單調(diào)性
。ㄋ模┬〗Y(jié)作業(yè)
提問:今天學(xué)習(xí)了什么?
引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。
課后作業(yè):
思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
高中數(shù)學(xué)備課教案 8
教學(xué)目標(biāo)
。1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題。
。2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。
(3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點。
。4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法。
(5)進(jìn)一步理解數(shù)形結(jié)合的思想方法。
教學(xué)建議
教材分析
(1)知識結(jié)構(gòu)
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì)。曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。
。2)重點、難點分析
、俦竟(jié)內(nèi)容教學(xué)的'重點是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想。
、诒竟(jié)的難點是曲線方程的概念和求曲線方程的方法。
教法建議
。1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應(yīng)關(guān)系,說明曲線與方程的對應(yīng)關(guān)系。曲線與方程對應(yīng)關(guān)系的基礎(chǔ)是點與坐標(biāo)的對應(yīng)關(guān)系。注意強調(diào)曲線方程的完備性和純粹性。
。2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識幫助學(xué)生領(lǐng)會坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備。
。3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則。
。4)從集合與對應(yīng)的觀點可以看得更清楚:
設(shè) 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應(yīng)的點的坐標(biāo)的集合。
。5)在學(xué)習(xí)求曲線方程的方法時,應(yīng)從具體實例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實例的基礎(chǔ)上讓學(xué)生自然地獲得。教學(xué)中對課本例2的解法分析很重要。
這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即
文字語言中的幾何條件 數(shù)學(xué)符號語言中的等式 數(shù)學(xué)符號語言中含動點坐標(biāo) , 的代數(shù)方程 簡化了的 , 的代數(shù)方程
由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標(biāo)的代數(shù)方程!
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”。
高中數(shù)學(xué)備課教案 9
教材分析:
前面已學(xué)習(xí)了向量的概念及向量的線性運算,這里引入一種新的向量運算——向量的數(shù)量積。教科書以物體受力做功為背景引入向量數(shù)量積的概念,既使向量數(shù)量積運算與學(xué)生已有知識建立了聯(lián)系,又使學(xué)生看到向量數(shù)量積與向量模的大小及夾角有關(guān),同時與前面的向量運算不同,其計算結(jié)果不是向量而是數(shù)量。
在定義了數(shù)量積的概念后,進(jìn)一步探究了兩個向量夾角對數(shù)量積符號的影響;然后由投影的概念得出了數(shù)量積的.幾何意義;并由數(shù)量積的定義推導(dǎo)出一些數(shù)量積的重要性質(zhì);最后“探究”研究了運算律。
教學(xué)目標(biāo):
(一)知識與技能
1.掌握數(shù)量積的定義、重要性質(zhì)及運算律;
2.能應(yīng)用數(shù)量積的重要性質(zhì)及運算律解決問題;
3.了解用平面向量數(shù)量積可以解決長度、角度、垂直共線等問題,為下節(jié)課靈活運用平面向量數(shù)量積解決問題打好基礎(chǔ)。
(二)過程與方法
以物體受力做功為背景引入向量數(shù)量積的概念,從數(shù)與形兩方面引導(dǎo)學(xué)生對向量數(shù)量積定義進(jìn)行探究,通過例題分析,使學(xué)生明確向量的數(shù)量積與數(shù)的乘法的聯(lián)系與區(qū)別。
(三)情感、態(tài)度與價值觀
創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從物理學(xué)中“功”這個概念引入課題,開始就激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生容易切入課題,培養(yǎng)學(xué)生用數(shù)學(xué)的意識,加強數(shù)學(xué)與其它學(xué)科及生活實踐的聯(lián)系。
教學(xué)重點:
1.平面向量的數(shù)量積的定義;
2.用平面向量的數(shù)量積表示向量的模及向量的夾角。
教學(xué)難點:
平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用。
教學(xué)方法:
啟發(fā)引導(dǎo)式
教學(xué)過程:
(一)提出問題,引入新課
前面我們學(xué)習(xí)了平面向量的線性運算,包括向量的加法、減法、以及數(shù)乘運算,它們的運算結(jié)果都是向量,既然兩個向量可以進(jìn)行加法、減法運算,我們自然會提出:兩個向量是否能進(jìn)行“乘法”運算呢?如果能,運算結(jié)果又是什么呢?
這讓我們聯(lián)想到物理中“功”的概念,即如果一個物體在力F的作用下產(chǎn)生位移s,F(xiàn)與s的夾角是θ,那么力F所做的功如何計算呢?
我們知道:W=|F||s|cosθ,功是一個標(biāo)量(數(shù)量),而力它等于力F和位移s都是矢量(向量),功等于力和位移這兩個向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看成是兩向量F和s的一種運算的結(jié)果呢,為此我們引入平面向量的數(shù)量積。
(二)講授新課
高中數(shù)學(xué)備課教案 10
課題:
等比數(shù)列的概念
教學(xué)目標(biāo)
1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項公式、
2、使學(xué)生進(jìn)一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、
3、培養(yǎng)學(xué)生勤于思考,實事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、
教學(xué)重點,難點
重點、難點是等比數(shù)列的定義的歸納及通項公式的推導(dǎo)、
教學(xué)用具
投影儀,多媒體軟件,電腦、
教學(xué)方法
討論、談話法、
教學(xué)過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)
、佟2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
、1,—1,1,—1,1,—1,1,—1,…
、1,—10,100,—1000,10000,—100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、
二、講解新課
請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進(jìn)行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)
這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的'另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數(shù)列(板書)
1、等比數(shù)列的定義(板書)
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點詞語、
請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時,數(shù)列既是等差又是等比數(shù)列,當(dāng)時,它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認(rèn)識:
2、對定義的認(rèn)識(板書)
。1)等比數(shù)列的首項不為0;
。2)等比數(shù)列的每一項都不為0,即
問題:一個數(shù)列各項均不為0是這個數(shù)列為等比數(shù)列的什么條件?
(3)公比不為0、
用數(shù)學(xué)式子表示等比數(shù)列的定義、
是等比數(shù)列
①、在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為
是等比數(shù)列?為什么不能?式子給出了數(shù)列第項與第
項的數(shù)量關(guān)系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當(dāng)給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數(shù)列的通項公式(板書)
問題:用和表示第項
、俨煌耆珰w納法
②疊乘法,…,,這個式子相乘得,所以(板書)
。1)等比數(shù)列的通項公式得出通項公式后,讓學(xué)生思考如何認(rèn)識通項公式、(板書)
。2)對公式的認(rèn)識
由學(xué)生來說,最后歸結(jié):
、俸瘮(shù)觀點;
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識,此處再復(fù)習(xí)鞏固而已)、
這里強調(diào)方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。
三、小結(jié)
1、本節(jié)課研究了等比數(shù)列的概念,得到了通項公式;
2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3、用方程的思想認(rèn)識通項公式,并加以應(yīng)用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(對數(shù)算也行)。
【高中數(shù)學(xué)備課教案】相關(guān)文章:
高中數(shù)學(xué)備課教案12-22
高中數(shù)學(xué)備課教案模板09-29
高中數(shù)學(xué)備課教案8篇12-31
高中數(shù)學(xué)備課教案7篇12-23