亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

高中數(shù)學(xué)《導(dǎo)數(shù)概念》說課稿

時間:2024-07-10 10:56:31 資料大全 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)《導(dǎo)數(shù)概念》說課稿

  各位評委老師:

高中數(shù)學(xué)《導(dǎo)數(shù)概念》說課稿

  下午好,今天我說課的內(nèi)容是來唐宋八大家之首韓愈的《師說》,下面我將從教學(xué)理念、教材分析、學(xué)情分析、教學(xué)目標(biāo)等七方面來展開我本次說課,

高中數(shù)學(xué)《導(dǎo)數(shù)概念》說課稿

  一、地位作用

  數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應(yīng)用較為廣泛,在整個高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問題的能力。

  基于此,設(shè)計本節(jié)的數(shù)學(xué)思路上:

  利用類比的思想,聯(lián)系等差數(shù)列的概念及通項公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動性,調(diào)動學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。

  二、教學(xué)目標(biāo)

  知識目標(biāo):1)理解等比數(shù)列的概念

  2)掌握等比數(shù)列的通項公式

  3)并能用公式解決一些實際問題

  能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學(xué)生運(yùn)用類比思想、解決分析問題的能力。

  三、教學(xué)重點

  1)等比數(shù)列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點

  2)等比數(shù)列的通項公式的推導(dǎo)及應(yīng)用

  四、教學(xué)難點

  “等比”的理解及利用通項公式解決一些問題,

資料共享平臺

高中數(shù)學(xué)《導(dǎo)數(shù)概念》說課稿》(http://m.msguai.com)。

  五、教學(xué)過程設(shè)計

  (一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)

  首先讓學(xué)生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。

  回答下列問題

  1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數(shù)列的定義。

  2)觀察以下幾個數(shù)列,回答下面問題:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

  -1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉是等比數(shù)列?若是公比是什么?

  ②公比q為什么不能等于零?首項能為零嗎?

 、酃萹=1時是什么數(shù)列?

  ④q>0時數(shù)列遞增嗎?q<0時遞減嗎?

  3)怎樣推導(dǎo)等比數(shù)列通項公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?

  4)等比數(shù)列通項公式與函數(shù)關(guān)系怎樣?

  (二)歸納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)

  這一環(huán)節(jié)主要是通過學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個重點內(nèi)容。

  通過回答問題(1)(2)給出等比數(shù)列的定義并強(qiáng)調(diào)以下幾點:①定義關(guān)鍵字“第二項起”“常數(shù)”;

 、谝龑(dǎo)學(xué)生用數(shù)學(xué)語言表達(dá)定義: =q(n≥2);③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

 、躴>0時等比數(shù)列單調(diào)性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。

  通過回答問題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項公式。

  法一:歸納法,學(xué)會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。

  法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識轉(zhuǎn)化能力。

【高中數(shù)學(xué)《導(dǎo)數(shù)概念》說課稿】相關(guān)文章:

《函數(shù)的概念》說課稿08-15

高中數(shù)學(xué)《直線的斜率》說課稿10-03

高中數(shù)學(xué)標(biāo)軸的平移說課稿10-11

高中數(shù)學(xué)《平面向量》優(yōu)秀說課稿05-25

高中數(shù)學(xué)說課稿:《圓的標(biāo)準(zhǔn)方程》07-06

高中數(shù)學(xué)說課稿:《平面動點的軌跡》07-21

高中數(shù)學(xué)《單調(diào)性與最大(小)值》說課稿09-07

概念的悖謬作文06-03

檔案整理的概念03-05

高中數(shù)學(xué)《幾類不同增長的函數(shù)模型》說課稿07-06