亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

二次根式教案

時(shí)間:2023-02-27 16:41:14 教案 我要投稿

二次根式教案15篇

  作為一名默默奉獻(xiàn)的教育工作者,就不得不需要編寫(xiě)教案,借助教案可以更好地組織教學(xué)活動(dòng)。那要怎么寫(xiě)好教案呢?下面是小編為大家整理的二次根式教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

二次根式教案15篇

二次根式教案1

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生了解最簡(jiǎn)二次根式的概念和同類二次根式的概念.

  2.能判斷二次根式中的同類二次根式.

  3.會(huì)用同類二次根式進(jìn)行二次根式的加減.

 。ǘ┠芰τ(xùn)練點(diǎn)

  通過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運(yùn)算能力.

 。ㄈ┑掠凉B透點(diǎn)

  從簡(jiǎn)單的同類二次根式的合并,層層深入,從解題的過(guò)程中,讓學(xué)生體會(huì)轉(zhuǎn)化的思維,滲透辯證唯物主義思想.

 。ㄋ模┟烙凉B透點(diǎn)

  通過(guò)二次根式的加減,滲透二次根式化簡(jiǎn)合并后的形式簡(jiǎn)單美.

  二、學(xué)法引導(dǎo)

  1.教師教法引導(dǎo)法、比較法、剖析法,在比較和剖析中,不斷糾正錯(cuò)誤,從而樹(shù)立牢固的計(jì)算方法.

  2.學(xué)生學(xué)法通過(guò)不斷的練習(xí),從中體會(huì)、比較、二次根式加減法中,正確的方法使用,并注重小結(jié)出二次根式加減法的法則.

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn)二次根式的加減法運(yùn)算.

  2.教學(xué)難點(diǎn)二次根式的化簡(jiǎn).

  3.疑點(diǎn)及解決辦法二次根式的加減法的關(guān)鍵在于二次根式的化簡(jiǎn),在適當(dāng)復(fù)習(xí)二次根的化簡(jiǎn)后進(jìn)行一步引入幾個(gè)整式加減法的,以引起學(xué)生的.求知欲與興趣,從而最后引入同類二次根式的加減法,可進(jìn)行階梯式教學(xué),由淺到深、由簡(jiǎn)單到復(fù)雜的教學(xué)方法,以利于學(xué)生的理解、掌握和運(yùn)用,通過(guò)具體例題的計(jì)算,可由教師引導(dǎo),由學(xué)生總結(jié)出計(jì)算的步驟和注意的問(wèn)題,還可以通過(guò)反例,讓學(xué)生去偽存真,這種比較法的教學(xué)可使學(xué)生對(duì)概念的理解、法則的運(yùn)用更加準(zhǔn)確和熟練,并能提高學(xué)生的學(xué)習(xí)興趣,以達(dá)到更好的學(xué)習(xí)效果.

  四、課時(shí)安排

  2課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影片

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.復(fù)習(xí)最簡(jiǎn)二根式整式及的加減運(yùn)算,引入二次根式的加減運(yùn)算,盡量讓學(xué)生回答問(wèn)題.

  2.教師通過(guò)例題的示范讓學(xué)生了解什么是二次根式的加減法,并引入同類的二次根式的定義.

  3.再通過(guò)較復(fù)雜的二次根式的加減法計(jì)算,引導(dǎo)學(xué)生小結(jié)歸納出二次根式的加減法的法則.

  4.通過(guò)學(xué)生的反復(fù)訓(xùn)練,發(fā)現(xiàn)問(wèn)題及時(shí)糾正,并引導(dǎo)學(xué)生從解題過(guò)程中體會(huì)理解二次根式加減法的實(shí)質(zhì)及解決的方法.

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  學(xué)習(xí)二次根式化簡(jiǎn)的目的是為了能將一些最終能化為同類二次根式項(xiàng)相合并,從而達(dá)到化繁為簡(jiǎn)的目的,本節(jié)課就是研究二次根式的加減法.

  (二)整體感知

  同類二次根式的概念應(yīng)分二層含義去理解(1)化簡(jiǎn)后(2)被開(kāi)方數(shù)還相同.通過(guò)正確理解二次根式加減法的法則來(lái)準(zhǔn)確地實(shí)施二次根式加減法的運(yùn)算,應(yīng)特別注意合并同類二次根式時(shí)僅將它們的系數(shù)相加減,根式一定要保持不變,并可對(duì)比整式的加減法則以增加對(duì)合并同類二次根式的理解,增強(qiáng)綜合運(yùn)算的能力.

二次根式教案2

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的除法法則及其逆用,最簡(jiǎn)二次根式的概念。

  2.內(nèi)容解析

  二次根式除法法則及商的算術(shù)平方根的探究,最簡(jiǎn)二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡(jiǎn)二次根式,是加減運(yùn)算的基礎(chǔ).

  基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡(jiǎn)二次根式.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

  (2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;

  (3) 理解最簡(jiǎn)二次根式的概念.

  2.目標(biāo)解析

  (1)學(xué)生能通過(guò)運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

  (2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡(jiǎn)單的二次根式進(jìn)行運(yùn)算.

  (3)通過(guò)觀察二次根式的運(yùn)算結(jié)果,理解最簡(jiǎn)二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡(jiǎn)二次根式.

  三、教學(xué)問(wèn)題診斷分析

  本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的'算術(shù)平方根的性質(zhì)來(lái)進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過(guò)程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

  四、教學(xué)過(guò)程設(shè)計(jì)

  1.復(fù)習(xí)提問(wèn),探究規(guī)律

  問(wèn)題1 二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

  師生活動(dòng) 學(xué)生回答。

  【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過(guò)程,類比該過(guò)程,學(xué)生可以探究除法法則.

  五、目標(biāo)檢測(cè)設(shè)計(jì)

二次根式教案3

  一、教學(xué)過(guò)程

 。ㄒ唬⿵(fù)習(xí)提問(wèn)

  1.什么叫二次根式?

  2.下列各式是二次根式,求式子中的字母所滿足的條件:

  (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).

 。ǘ┒胃降暮(jiǎn)單性質(zhì)

  上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡(jiǎn)單性質(zhì)

  我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根。將符號(hào)看作開(kāi)平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開(kāi)平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:

  這里需要注意的是公式成立的條件是a≥0,提問(wèn)學(xué)生,a可以代表一個(gè)代數(shù)式嗎?

  請(qǐng)分析:引導(dǎo)學(xué)生答如時(shí)才成立。

  時(shí)才成立,即a取任意實(shí)數(shù)時(shí)都成立。

  我們知道

  如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方形式了.

  例1計(jì)算:

  分析:這個(gè)例題中的四個(gè)小題,主要是運(yùn)用公式。其中(2)、(3)、(4)題又運(yùn)用了整式乘除中學(xué)習(xí)的.積的冪的運(yùn)算性質(zhì).結(jié)合第(2)小題中的,說(shuō)明,這與帶分?jǐn)?shù)。因此,以后遇到,應(yīng)寫(xiě)成,而不宜寫(xiě)成。

  例2把下列非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式:

 。1)5;(2)11;(3)1。6;(4)0。35.

  例3把下列各式寫(xiě)成平方差的形式,再分解因式:

 。1)4x2—1;(2)a4—9;

  (3)3a2—10;(4)a4—6a2+9.

  解:(1)4x2—1

  =(2x)2—12

  =(2x+1)(2x—1).

 。2)a4—9

  =(a2)2—32

  =(a2+3)(a2—3)

 。3)3a2—10

 。4)a4—6a2+32

  =(a2)2—6a2+32

  =(a2—3)2

 。ㄈ┬〗Y(jié)

  1.繼續(xù)鞏固二次根式的定義,及二次根式中被開(kāi)方數(shù)的取值范圍問(wèn)題.

  2.關(guān)于公式的應(yīng)用。

  (1)經(jīng)常用于乘法的運(yùn)算中.

 。2)可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問(wèn)題.

 。ㄋ模┚毩(xí)和作業(yè)

  練習(xí):

  1.填空

  注意第(4)題需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.

  2.實(shí)數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如下圖所示:

  分析:通過(guò)本題滲透數(shù)形結(jié)合的思想,進(jìn)一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.

  3.計(jì)算

  二、作業(yè)

  教材P.172習(xí)題11.1;A組2、3;B組2.

  補(bǔ)充作業(yè):

  下列各式中的字母滿足什么條件時(shí),才能使該式成為二次根式?

  分析:要使這些式成為二次根式,只要被開(kāi)方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:

  (1)由—|a—2b|≥0,得a—2b≤0,

  但根據(jù)絕對(duì)值的性質(zhì),有|a—2b|≥0,

  ∴|a—2b|=0,即a—2b=0,得a=2b.

 。2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0

  ∴(m2+1)(m—n)≤0,又m2+1>0,

  ∴ m—n≤0,即m≤n.

  說(shuō)明:本題求解較難些,但基本方法仍是由二次根式中被開(kāi)方數(shù)(式)大于或等于零列出不等式.通過(guò)本題培養(yǎng)學(xué)生對(duì)于較復(fù)雜的題的分析問(wèn)題和解決問(wèn)題的能力,并且進(jìn)一步鞏固二次根式的概念.

  三、板書(shū)設(shè)計(jì)

二次根式教案4

  【教學(xué)目標(biāo)】

  1.運(yùn)用法則

  進(jìn)行二次根式的乘除運(yùn)算;

  2.會(huì)用公式

  化簡(jiǎn)二次根式。

  【教學(xué)重點(diǎn)】

  運(yùn)用

  進(jìn)行化簡(jiǎn)或計(jì)算

  【教學(xué)難點(diǎn)】

  經(jīng)歷二次根式的乘除法則的探究過(guò)程

  【教學(xué)過(guò)程】

  一、情境創(chuàng)設(shè):

  1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過(guò)二次根式的哪些性質(zhì)?

  2.計(jì)算:

  二、探索活動(dòng):

  1.學(xué)生計(jì)算;

  2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

  3.概括:

  得出:二次根式相乘,實(shí)際上就是把被開(kāi)方數(shù)相乘,而根號(hào)不變。

  將上面的公式逆向運(yùn)用可得:

  積的`算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

  三、例題講解:

  1.計(jì)算:

  2.化簡(jiǎn):

  小結(jié):如何化簡(jiǎn)二次根式?

  1.(關(guān)鍵)將被開(kāi)方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

  2.P62結(jié)果中,被開(kāi)方數(shù)應(yīng)不含能開(kāi)得盡方的因數(shù)或因式。

  四、課堂練習(xí):

  (一).P62 練習(xí)1、2

  其中2中(5)

  注意:

  不是積的形式,要因數(shù)分解為36×16=242.

  (二).P67 3 計(jì)算 (2)(4)

  補(bǔ)充練習(xí):

  1.(x>0,y>0)

  2.拓展與提高:

  化簡(jiǎn):1).(a>0,b>0)

  2).(y

  2.若,求m的取值范圍。

  ☆3.已知:,求的值。

  五、本課小結(jié)與作業(yè):

  小結(jié):二次根式的乘法法則

  作業(yè):

  1).課課練P9-10

  2).補(bǔ)充習(xí)題

二次根式教案5

  教案

  教法:

  1、引導(dǎo)發(fā)現(xiàn)法:通過(guò)教師精心設(shè)計(jì)的問(wèn)題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問(wèn)題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;

  2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。

  學(xué)法:

  1、類比的方法通過(guò)觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。

  2、閱讀的`方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。

  3、分組討論法將自己的意見(jiàn)在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。

  4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。

  知識(shí)點(diǎn)

  上節(jié)課我們認(rèn)識(shí)了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來(lái)學(xué)習(xí)。

  二、展示目標(biāo),自主學(xué)習(xí):

  自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁(yè)——4頁(yè)內(nèi)容,完成下列任務(wù):

  1、請(qǐng)比較與0的大小,你得到的結(jié)論是:________________________。

  2、完成3頁(yè)“探究”中的填空,你得到的結(jié)論是____________________。

  3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的。

  4、完成4頁(yè)“探究”中的填空,你得到的結(jié)論是:____________________。

  5 、看懂例3,有困難可與同伴交流或問(wèn)老師。

  課時(shí)作業(yè)

  教師節(jié)要到了,為了表示對(duì)老師的敬意,小明做了兩張大小不同的正方形壁畫(huà)準(zhǔn)備送給老師,其中一張面積為800 cm2,另一張面積為450 cm2,他想如果再用金彩帶把壁畫(huà)的邊鑲上會(huì)更漂亮,他現(xiàn)在有1.2 m長(zhǎng)的金彩帶,請(qǐng)你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買(mǎi)多長(zhǎng)的金彩帶?(≈1.414,結(jié)果保留整數(shù))

二次根式教案6

  一、復(fù)習(xí)引入

  學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題:

  1.計(jì)算

  (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改寫(xiě)成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立.

  整式運(yùn)算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運(yùn)算規(guī)律也適用于二次根式.

  例1.計(jì)算:

  (1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的'運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計(jì)算

 。1)(+6)(3-)(2)(+)(-)

  分析:剛才已經(jīng)分析,二次根式的多項(xiàng)式乘以多項(xiàng)式運(yùn)算在乘法公式運(yùn)算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、鞏固練習(xí)

  課本P20練習(xí)1、2.

  四、應(yīng)用拓展

  例3.已知=2-,其中a、b是實(shí)數(shù),且a+b≠0,

  化簡(jiǎn)+,并求值.

  分析:由于(+)(-)=1,因此對(duì)代數(shù)式的化簡(jiǎn),可先將分母有理化,再通過(guò)解含有字母系數(shù)的一元一次方程得到x的值,代入化簡(jiǎn)得結(jié)果即可?

二次根式教案7

  一、內(nèi)容和內(nèi)容解析

  1、內(nèi)容

  二次根式的概念。

  2、內(nèi)容解析

  本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開(kāi)方與乘方互為逆運(yùn)算的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的概念。它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ)。

  教材先設(shè)置了三個(gè)實(shí)際問(wèn)題,這些問(wèn)題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義。再通過(guò)例1討論了二次根式中被開(kāi)方數(shù)字母的取值范圍的問(wèn)題,加深學(xué)生對(duì)二次根式的定義的理解。

  本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

  二、目標(biāo)和目標(biāo)解析

  1、教學(xué)目標(biāo)

 。1)體會(huì)研究二次根式是實(shí)際的需要。

  (2)了解二次根式的概念。

  2、教學(xué)目標(biāo)解析

 。1)學(xué)生能用二次根式表示實(shí)際問(wèn)題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性。

 。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開(kāi)方數(shù)字母的取值范圍。

  三、教學(xué)問(wèn)題診斷分析

  對(duì)于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解“的雙重非負(fù)性,”即被開(kāi)方數(shù)≥0是非負(fù)數(shù),的算術(shù)平方根≥0也是非負(fù)數(shù)。教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開(kāi)方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷。

  本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性。

  四、教學(xué)過(guò)程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問(wèn)題

  問(wèn)題1你能用帶有根號(hào)的的式子填空嗎?

 。1)面積為3的正方形的邊長(zhǎng)為_(kāi)______,面積為S的正方形的邊長(zhǎng)為_(kāi)______。

  (2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2倍,面積為130?,則它的寬為_(kāi)_____。

  (3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開(kāi)始落下的高度h(單位:)滿足關(guān)系h=5t?,如果用含有h的式子表示t,則t=_____。

  師生活動(dòng):學(xué)生獨(dú)立完成上述問(wèn)題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià)。

  【設(shè)計(jì)意圖】讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性。

  問(wèn)題2上面得到的式子,,分別表示什么意義?它們有什么共同特征?

  師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根。

  【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊。

  2、抽象概括,形成概念

  問(wèn)題3你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

  師生活動(dòng):學(xué)生小組討論,全班交流。教師由此給出二次根式的定義:一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號(hào)。

  【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過(guò)程,培養(yǎng)學(xué)生的概括能力。

  追問(wèn):在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

  師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由。

  【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的理解。

  3、辨析概念,應(yīng)用鞏固

  例1當(dāng)時(shí)怎樣的實(shí)數(shù)時(shí),在實(shí)數(shù)范圍內(nèi)有意義?

  師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)的理解。

  例2當(dāng)是怎樣的實(shí)數(shù)時(shí),在實(shí)數(shù)范圍內(nèi)有意義?呢?

  師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問(wèn)。

  【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)為非負(fù)數(shù)的理解。

  問(wèn)題4你能比較與0的大小嗎?

  師生活動(dòng):通過(guò)分和這兩種情況的討論,比較與0的大小,引導(dǎo)學(xué)生得出≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的.理解,

  【設(shè)計(jì)意圖】通過(guò)這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生分類討論和歸納概括的能力。

  4、綜合運(yùn)用,鞏固提高

  練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)。

  練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義。

 。1);(2);(3);(4)。

  【設(shè)計(jì)意圖】辨析二次根式的概念,確定二次根式有意義的條件。

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維。

  5、總結(jié)反思

  教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題。

 。1)本節(jié)課你學(xué)到了哪一類新的式子?

  (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

 。3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動(dòng):教師引導(dǎo),學(xué)生小結(jié)。

  【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法。

  6。布置作業(yè):

  教科書(shū)習(xí)題16。1第1,3,5,7,10題。

  五、目標(biāo)檢測(cè)設(shè)計(jì)

  1、下列各式中,一定是二次根式的是()

  A。B。C。D。

  【設(shè)計(jì)意圖】考查對(duì)二次根式概念的了解,要特別注意被開(kāi)方數(shù)為非負(fù)數(shù)。

  2、當(dāng)時(shí),二次根式無(wú)意義。

  【設(shè)計(jì)意圖】考查二次根式無(wú)意義的條件,即被開(kāi)方數(shù)小于0,要注意審題。

  3、當(dāng)時(shí),二次根式有最小值,其最小值是。

  【設(shè)計(jì)意圖】本題主要考查二次根式被開(kāi)方數(shù)是非負(fù)數(shù)的靈活運(yùn)用。

  4、對(duì)于,小紅根據(jù)被開(kāi)方數(shù)是非負(fù)數(shù),得出的取值范圍是≥。小慧認(rèn)為還應(yīng)考慮分母不為0的情況。你認(rèn)為小慧的想法正確嗎?試求出的取值范圍。

  【設(shè)計(jì)意圖】考查二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮。

二次根式教案8

  一、學(xué)習(xí)目標(biāo):

  1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用.

  2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理.

  二、重點(diǎn)難點(diǎn):

  重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用

  難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過(guò)程

  三、合作學(xué)習(xí):

  (一)回顧單項(xiàng)式除以單項(xiàng)式法則

  (二)學(xué)生動(dòng)手,探究新課

  1.計(jì)算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2.提問(wèn):①說(shuō)說(shuō)你是怎樣計(jì)算的②還有什么發(fā)現(xiàn)嗎?

  (三) 總結(jié)法則

  1.多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以___________,再把所得的商______

  2.本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成______________

  四、精講精練

  例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  隨堂練習(xí):教科書(shū)練習(xí)

  五、小結(jié)

  1、單項(xiàng)式的除法法則

  2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:

  A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過(guò)程中注意單項(xiàng)式的系數(shù)飽含它前面的`符號(hào)

  B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

  C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;

  D、要注意運(yùn)算順序,有乘方要先做乘方,有括號(hào)先算括號(hào)里的,同級(jí)運(yùn)算從左到右的順序進(jìn)行.

  E、多項(xiàng)式除以單項(xiàng)式法則

  第三十四學(xué)時(shí):14.2.1平方差公式

  一、學(xué)習(xí)目標(biāo):

  1.經(jīng)歷探索平方差公式的過(guò)程.

  2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算.

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用

  難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

  三、合作學(xué)習(xí)

  你能用簡(jiǎn)便方法計(jì)算下列各題嗎?

  (1)20xx×1999 (2)998×1002

  導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精講精練

  例1:運(yùn)用平方差公式計(jì)算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:計(jì)算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  隨堂練習(xí)

二次根式教案9

  教學(xué)內(nèi)容

  二次根式的加減

  教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo):理解和掌握二次根式加減的方法.

  過(guò)程與方法目標(biāo):先提出問(wèn)題,分析問(wèn)題,在分析問(wèn)題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗(yàn),用它來(lái)指導(dǎo)根式的計(jì)算和化簡(jiǎn).

  情感與價(jià)值目標(biāo):通過(guò)本節(jié)的'學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問(wèn)題的能力.

  重難點(diǎn)關(guān)鍵

  1.重點(diǎn):二次根式化簡(jiǎn)為最簡(jiǎn)根式.

  2.難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡(jiǎn)二次根式.

  教法:

  1、引導(dǎo)發(fā)現(xiàn)法:通過(guò)教師精心設(shè)計(jì)的問(wèn)題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問(wèn)題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;

  2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項(xiàng)進(jìn)行類比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。

  學(xué)法:

  1、類比的方法通過(guò)觀察、類比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。

  2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。

  3、分組討論法將自己的意見(jiàn)在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。

  4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。

  知識(shí)點(diǎn)

  自主檢測(cè)、同伴互查

  1、師生共同解決“學(xué)法”問(wèn)題與13頁(yè)“練習(xí)1”;

  2、學(xué)生演板13頁(yè)“練習(xí)2、3”。

  四、知識(shí)梳理、師生共議

  1、談收獲:

  (1)二次根式的加減法則是什么?有哪些運(yùn)算步驟?

  (2)怎樣合并被開(kāi)方數(shù)相同的二次根式呢?

  (3)二次根式進(jìn)行加減運(yùn)算時(shí)應(yīng)注意什么問(wèn)題?

  2、說(shuō)不足:。

  五、作業(yè)訓(xùn)練、鞏固提高

  1、必做題:課本15頁(yè)的“習(xí)題2、3”;

  課時(shí)練習(xí)

  1.揭示學(xué)法、自主學(xué)習(xí)

  認(rèn)真閱讀課本14頁(yè)內(nèi)容,完成下列任務(wù):

  1、完成14頁(yè)“例3、4”,先做再對(duì)照:

  (1)平方差公式__________,完全平方公式__________.

  (2)每步的運(yùn)算依據(jù)是什么?應(yīng)注意什么問(wèn)題?

  (時(shí)間7分鐘若有困難,與同伴討論)

  三、自主檢測(cè)、同伴互查

  1、師生共同解決“學(xué)法”問(wèn)題;

  2、學(xué)生演板14頁(yè)“練習(xí)1、2”。

  四、知識(shí)梳理、師生共議

  1、談收獲:

  (1)二次根式進(jìn)行混合運(yùn)算時(shí)運(yùn)用了哪些知識(shí)?

  (2)二次根式進(jìn)行混合運(yùn)算時(shí)應(yīng)注意哪些問(wèn)題?

二次根式教案10

  目 標(biāo)

  1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;

  2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題;

  3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。

  教學(xué)設(shè)想

  本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。

  教 學(xué) 程序 與 策 略

  一、預(yù)習(xí)檢測(cè)

  1.解決節(jié)前問(wèn)題:

  如圖,架在消防車上的云梯AB長(zhǎng)為15m,AD:BD=1 :0.6,云梯底部離地面的`距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

  歸納:

  在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問(wèn)題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問(wèn)題時(shí)經(jīng)常用到二次根式及其運(yùn)算。

  二、合作交流:

  1、:如圖,扶梯AB的坡比(BE與AE的長(zhǎng)度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過(guò)了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)

  讓學(xué)生有充分的時(shí)間閱讀問(wèn)題,并結(jié)合圖形分析問(wèn)題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長(zhǎng)是已知的?哪些線段的長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?

  注意解題格式

  教 學(xué) 程 序 與 策 略

  三、鞏固練習(xí):

  完成課本P17、1,組長(zhǎng)檢查反饋;

  四、拓展提高:

  1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過(guò)多少cm。

  師生共同分析解題思路,請(qǐng)學(xué)生寫(xiě)出解題過(guò)程。

  五、課堂小結(jié):

  1.談一談:本節(jié)課你有什么收獲?

  2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題時(shí)應(yīng)注意的的問(wèn)題

  六、堂堂清

  1: 作業(yè)本(2)

  2:課本P17頁(yè):第4、5題選做。

二次根式教案11

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數(shù)學(xué)解決實(shí)際問(wèn)題的意識(shí)和能力。另外,通過(guò)本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識(shí)的.延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹(shù)立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計(jì)理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過(guò)去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設(shè)置開(kāi)放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說(shuō)明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識(shí)與技能目標(biāo):

  會(huì)化簡(jiǎn)二次根式,了解同類二次根式的概念,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運(yùn)算解決生活的實(shí)際問(wèn)題。

  過(guò)程與方法目標(biāo):

  通過(guò)類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數(shù)學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價(jià)值觀:

  通過(guò)對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),使他們體驗(yàn)到成功的樂(lè)趣.

  重點(diǎn)、難點(diǎn):重點(diǎn):

  合并被開(kāi)放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法。

  難點(diǎn):

  二次根式加減法的實(shí)際應(yīng)用。

  關(guān)鍵問(wèn)題 :

  了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問(wèn)題相結(jié)合,采用“問(wèn)題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實(shí)際問(wèn)題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

  3.嘗試訓(xùn)練法:通過(guò)學(xué)生嘗試,教師針對(duì)個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學(xué)目標(biāo):

  1.知識(shí)目標(biāo):二次根式的加減法運(yùn)算

  2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過(guò)二次根式的加減法運(yùn)算解決實(shí)際問(wèn)題。

  3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

  重難點(diǎn)分析:

  重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。

  難點(diǎn):正確合并被開(kāi)方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。

  教學(xué)關(guān)鍵:通過(guò)復(fù)習(xí)舊知識(shí),運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問(wèn)題激發(fā)學(xué)生求知欲;通過(guò)學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

  運(yùn)用教具:小黑板等。

  教學(xué)過(guò)程:

問(wèn)題與情景

師生活動(dòng)

設(shè)計(jì)目的

活動(dòng)一:

情景引入,導(dǎo)學(xué)展示

1.把下列二次根式化為最簡(jiǎn)二次根式: , ; , , 。上述兩組二次根式,有什么特點(diǎn)?

2.現(xiàn)有一塊長(zhǎng)7.5dm、寬5dm的木板,能否采用如教科書(shū)圖21.3-所示的方式,在這塊木板上截出兩個(gè)面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識(shí)的回顧,老師可以找同學(xué)直接回答。對(duì)于問(wèn)題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽(tīng)學(xué)生的交流,指導(dǎo)學(xué)生探究。

問(wèn):什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過(guò)找出被開(kāi)方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識(shí)的聯(lián)系。通過(guò)觀察,初步認(rèn)識(shí)同類二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習(xí)15頁(yè)例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

例1.計(jì)算:

(1) ;

(2) - ;

例2. 計(jì)算:

1)

2)

例3.要焊接一個(gè)如教科書(shū)圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動(dòng)二:分層練習(xí),合作互助

1.下列計(jì)算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計(jì)算:

(1) ;

(2)

(3)

(4)

3.(見(jiàn)課本16頁(yè))

補(bǔ)充:

活動(dòng)三:分層檢測(cè),反饋小結(jié)

教材17頁(yè)習(xí)題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學(xué)到了什么知識(shí)?你有什么收獲?

作業(yè):課堂練習(xí)冊(cè)第5、6頁(yè)。

自學(xué)的同時(shí)抽查部分同學(xué)在黑板上板書(shū)計(jì)算過(guò)程。抽2名C層同學(xué)在黑板上完成例1板書(shū)過(guò)程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書(shū)過(guò)程,若出現(xiàn)錯(cuò)誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書(shū)過(guò)程,并做適當(dāng)?shù)姆治鲋v解。

此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問(wèn)題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問(wèn)題的方案是否得當(dāng);2)考慮的問(wèn)題是否全面。3)計(jì)算是否準(zhǔn)確。

A層同學(xué)完成16頁(yè)練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問(wèn)題時(shí)共同分析矯正或請(qǐng)教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書(shū)練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書(shū)練習(xí)第3題后再分析講解。

點(diǎn)撥:1)對(duì) 的化簡(jiǎn)是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確

先測(cè)試,再小組內(nèi)互批,查找問(wèn)題。學(xué)生反思本節(jié)課學(xué)到的知識(shí),談自己的感受。

小結(jié)時(shí)教師要關(guān)注:

1)學(xué)生是否抓住本課的重點(diǎn);

2)對(duì)于常見(jiàn)錯(cuò)誤的認(rèn)識(shí)。

把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個(gè)層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過(guò)程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識(shí)的欲望。

二次根式的加減運(yùn)算融入實(shí)際問(wèn)題中去,提高了學(xué)生的學(xué)習(xí)興趣和對(duì)數(shù)學(xué)知識(shí)的`應(yīng)用意識(shí)和能力。

小組成員互相檢查學(xué)生對(duì)于新的知識(shí)掌握的情況,鞏固學(xué)生剛掌握的知識(shí)能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對(duì)課堂的問(wèn)題及時(shí)反饋,使學(xué)生熟練掌握新知識(shí)。

每個(gè)學(xué)生對(duì)于知識(shí)的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。

二次根式教案12

  教學(xué)目的

  1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;

  2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

  教學(xué)重點(diǎn)

  最簡(jiǎn)二次根式的定義。

  教學(xué)難點(diǎn)

  一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

  教學(xué)過(guò)程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?

  化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

  滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

  (1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。

  最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:

  3.例題:

  例1 把下列各式化成最簡(jiǎn)二次根式:

  例2 把下列各式化成最簡(jiǎn)二次根式:

  4.總結(jié)

  把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

  當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的`算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

  三、鞏固練習(xí)

  1.把下列各式化成最簡(jiǎn)二次根式:

  2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

  四、小結(jié)

  本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。

  五、布置作業(yè)

  下列各式化成最簡(jiǎn)二次根式:

二次根式教案13

  教學(xué)設(shè)計(jì)思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的.意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.知道什么是二次根式,并會(huì)用二次根式的意義解題;

  2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

  過(guò)程與方法

  通過(guò)二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;

  情感態(tài)度價(jià)值觀

  1.經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程,發(fā)展應(yīng)用的意識(shí);

  2.通過(guò)二次根式性質(zhì)的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點(diǎn):確定二次根式中字母的取值范圍。

  教學(xué)方法

  啟發(fā)式、講練結(jié)合

  教學(xué)媒體

  多媒體

  課時(shí)安排

  1課時(shí)

二次根式教案14

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的加減乘除混合運(yùn)算.

  2.內(nèi)容解析

  二次根式的混合運(yùn)算是本章所學(xué)內(nèi)容的綜合運(yùn)用,運(yùn)算過(guò)程中用到乘法分配律,還需用多項(xiàng)式的乘法法則和整式的乘法公式,教學(xué)中要注意讓學(xué)生體會(huì)二次根式的運(yùn)算與整式運(yùn)算的聯(lián)系.

  基于以上分析,可以確定本課的教學(xué)重點(diǎn)是運(yùn)用乘法分配律、多項(xiàng)式乘法法則及乘法公式進(jìn)行二次根式的加減乘除混合運(yùn)算.

  二、目標(biāo)和目標(biāo)解析

  1.目標(biāo)

 。1)掌握二次根式混合運(yùn)算的法則,合理使用運(yùn)算律.

 。2)靈活運(yùn)用運(yùn)算律、乘法公式等技巧,使計(jì)算簡(jiǎn)便.

  2.目標(biāo)解析

  達(dá)成目標(biāo)(1)的標(biāo)志是:學(xué)生能在有理數(shù)混合運(yùn)算及整式的混合運(yùn)算基礎(chǔ)上,類比得出二次根式混合運(yùn)算的法則及算理.

  目標(biāo)(2)是通過(guò)類比整式乘法公式讓學(xué)生能熟練進(jìn)行二次根式混合運(yùn)算.

  三、教學(xué)問(wèn)題診斷分析

  二次根式的混合運(yùn)算,困難在于讓學(xué)生體會(huì)二次根式的運(yùn)算與整式運(yùn)算的聯(lián)系.在二次根式運(yùn)算中,法則和乘法公式仍然適用.

  本課的教學(xué)難點(diǎn)是:二次根式運(yùn)算中,靈活運(yùn)用多項(xiàng)式乘法法則及乘法公式.

  四、教學(xué)過(guò)程設(shè)計(jì)

 。ㄒ唬┨岢鰡(wèn)題

  問(wèn)題1:計(jì)算

 。1);(2).

  問(wèn)題2:計(jì)算

 。1);(2).

  師生活動(dòng):學(xué)生獨(dú)立完成計(jì)算,小結(jié)算理.

  追問(wèn)1:?jiǎn)栴}1、2中的字母、可以代表哪些數(shù)與式.

  師生活動(dòng):學(xué)生自由發(fā)言,引出、可代表二次根式.

  設(shè)計(jì)意圖:類比整式運(yùn)算引出二次根式混合運(yùn)算的法則與算理.

  (二)探索新知,解決問(wèn)題

  問(wèn)題3:類比問(wèn)題,完成計(jì)算:

 。1);(2).

  師生活動(dòng):學(xué)生獨(dú)立思考完成,請(qǐng)學(xué)生板演,教師適時(shí)引導(dǎo),兩題均用乘法分配律.

  設(shè)計(jì)意圖:讓學(xué)生體會(huì)到數(shù)的擴(kuò)充過(guò)程中運(yùn)算律的一致性.

  問(wèn)題4:在問(wèn)題2中,若令,你能計(jì)算下列式子的.值嗎?

 。1);(2).

  師生活動(dòng):學(xué)生通過(guò)類比思考得出結(jié)論,教師引導(dǎo)學(xué)生得出二次根式運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用.

  設(shè)計(jì)意圖:讓學(xué)生感受到數(shù)的擴(kuò)充過(guò)程中數(shù)式通性.

 。ㄈ┑湫屠}

  例1計(jì)算:(1);(2).

  例2計(jì)算:(1);

 。2);

 。3).

  師生活動(dòng):學(xué)生獨(dú)立完成計(jì)算,教師適時(shí)給予評(píng)價(jià).

  設(shè)計(jì)意圖:加強(qiáng)學(xué)生運(yùn)算技能的訓(xùn)練,進(jìn)一步讓學(xué)生認(rèn)識(shí)二次根式和整式性質(zhì)運(yùn)算法則上的一致性.例2、例3在不能用乘法公式的情況下,可用多項(xiàng)式乘法法則.

 。ㄋ模┱n堂小結(jié)

  整式的運(yùn)算法則和乘法公式中的字母意義非常廣泛,可以是單項(xiàng)式、多項(xiàng)式,也可以代表二次根式,所以整式的運(yùn)算法則和乘法公式適用于二次根式的運(yùn)算.

  設(shè)計(jì)意圖:讓學(xué)生加深數(shù)式通性的理解.

 。ㄎ澹┎贾米鳂I(yè)

  課本第15頁(yè)第4題.

  五、目標(biāo)檢測(cè)設(shè)計(jì)

  1.計(jì)算:的值是.

  2.計(jì)算:=;=.

  3.計(jì)算:=.

  4.計(jì)算:=.

  5.計(jì)算:=.

  設(shè)計(jì)意圖:通過(guò)練習(xí)熟悉二次根式的運(yùn)算的法則與算理.

二次根式教案15

  1.教學(xué)目標(biāo)

  (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過(guò)程;會(huì)進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算;

  (2)會(huì)用公式化簡(jiǎn)二次根式.

  2.目標(biāo)解析

  (1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

  (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式.

  教學(xué)問(wèn)題診斷分析

  本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.

  在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開(kāi)方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見(jiàn)教科書(shū)例6解法1),也可以先寫(xiě)成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見(jiàn)教科書(shū)例6解法2);(2)如果被開(kāi)方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn).

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn).

  教學(xué)過(guò)程設(shè)計(jì)

  1.復(fù)習(xí)引入,探究新知

  我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開(kāi)始我們要學(xué)習(xí)二次根式的'乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.

  問(wèn)題1 什么叫二次根式?二次根式有哪些性質(zhì)?

  師生活動(dòng) 學(xué)生回答。

  【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì).

  問(wèn)題2 教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

  師生活動(dòng) 學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容.

  【設(shè)計(jì)意圖】學(xué)生在自主探究的過(guò)程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語(yǔ)言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí).

  2.觀察比較,理解法則

  問(wèn)題3 簡(jiǎn)單的根式運(yùn)算.

  師生活動(dòng) 學(xué)生動(dòng)手操作,教師檢驗(yàn).

  問(wèn)題4 二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?

  師生活動(dòng) 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

  【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.

  3.例題示范,學(xué)會(huì)應(yīng)用

  例1 化簡(jiǎn):(1)二次根式的乘除; (2)二次根式的乘除.

  師生活動(dòng) 提問(wèn):你是怎么理解例(1)的?

  如果學(xué)生回答不完善,再追問(wèn):這個(gè)問(wèn)題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡(jiǎn)的效果?

  師生合作回答上述問(wèn)題.對(duì)于根式運(yùn)算的最后結(jié)果,一般被開(kāi)方數(shù)中有開(kāi)得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外.

  再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?

  【設(shè)計(jì)意圖】通過(guò)運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn).

  例2 計(jì)算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  師生活動(dòng) 學(xué)生計(jì)算,教師檢驗(yàn).

  (1)在被開(kāi)方數(shù)相乘的時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫(xiě)成二次根式的乘除再分解;

  (2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對(duì)于根號(hào)外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對(duì)根式進(jìn)行運(yùn)算;

  (3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外.

  【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算.讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.

  教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開(kāi)方數(shù)的符號(hào).可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題.

  4.鞏固概念,學(xué)以致用

  練習(xí):教科書(shū)第7頁(yè)練習(xí)第1題. 第10頁(yè)習(xí)題16.2第1題.

  【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.

  5.歸納小結(jié),反思提高

  師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:

  (1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?

  (2)你能說(shuō)明乘法法則逆用的意義嗎?

  (3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?

  6.布置作業(yè):教科書(shū)第7頁(yè)第2、3題.習(xí)題16.2第1,6題.

  五、目標(biāo)檢測(cè)設(shè)計(jì)

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).

  2.化簡(jiǎn)二次根式的乘除 ______________________________。

  【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.

  3.已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式.

【二次根式教案】相關(guān)文章:

二次根式教案02-15

數(shù)學(xué)二次根式教案02-15

二次根式09-29

二次根式教案匯編5篇04-10

二次根式教案模板五篇04-05

【實(shí)用】二次根式教案4篇04-06

【推薦】二次根式教案三篇04-05

數(shù)學(xué)教案-二次根式的除法09-29

數(shù)學(xué)教案-二次根式的化簡(jiǎn)09-29