亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

高考數(shù)學(xué)常考知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-04-27 08:50:10 總結(jié) 我要投稿
  • 相關(guān)推薦

高考數(shù)學(xué)?贾R(shí)點(diǎn)總結(jié)

  在平凡的學(xué)習(xí)生活中,說起知識(shí)點(diǎn),應(yīng)該沒有人不熟悉吧?知識(shí)點(diǎn)也可以理解為考試時(shí)會(huì)涉及到的知識(shí),也就是大綱的分支。為了幫助大家更高效的學(xué)習(xí),以下是小編精心整理的高考數(shù)學(xué)?贾R(shí)點(diǎn)總結(jié),希望對大家有所幫助。

高考數(shù)學(xué)?贾R(shí)點(diǎn)總結(jié)

  高考數(shù)學(xué)常考知識(shí)點(diǎn)總結(jié)1

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng)。

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列。

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n。

  (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合。

  2.數(shù)列的`分類

  (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時(shí),對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列。

  (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列。

  3.數(shù)列的通項(xiàng)公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來表示的,這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4。

  高考數(shù)學(xué)?贾R(shí)點(diǎn)總結(jié)2

  第一部分集合

 。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數(shù)與導(dǎo)數(shù)

  1、映射:注意

 、俚谝粋(gè)集合中的元素必須有象;

 、谝粚σ,或多對一。

  2、函數(shù)值域的求法:

 、俜治龇;

  ②配方法;

  ③判別式法;

 、芾煤瘮(shù)單調(diào)性;

 、輷Q元法;

  ⑥利用均值不等式;

 、呃脭(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);

 、嗬煤瘮(shù)有界性;

  ⑨導(dǎo)數(shù)法

  3、復(fù)合函數(shù)的.有關(guān)問題

 。1)復(fù)合函數(shù)定義域求法:

  ①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

 、谌鬴[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

 。2)復(fù)合函數(shù)單調(diào)性的判定:

 、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

 、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

 、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

  注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

  4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

  5、函數(shù)的奇偶性

  (1)函數(shù)的定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件;

  (2)是奇函數(shù);

 。3)是偶函數(shù);

 。4)奇函數(shù)在原點(diǎn)有定義,則;

 。5)在關(guān)于原點(diǎn)對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

 。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

  高考數(shù)學(xué)?贾R(shí)點(diǎn)總結(jié)3

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無序性,

  3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無限集 含有無限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運(yùn)算

  運(yùn)算類型 交 集 并 集 補(bǔ) 集

  定 義 由所有屬于A且屬于B的.元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  高考數(shù)學(xué)常考知識(shí)點(diǎn)總結(jié)4

  三角函數(shù)。

  注意歸一公式、誘導(dǎo)公式的正確性。

  數(shù)列題。

  1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;

  2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡潔的方法是,用當(dāng)前的.式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

  立體幾何題。

  1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

  2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問題。

  1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

  4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

  5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

  高考數(shù)學(xué)?贾R(shí)點(diǎn)總結(jié)5

  1、函數(shù)零點(diǎn)的概念:

  對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:

  函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的.圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。

  3、函數(shù)零點(diǎn)的求法:

  求函數(shù)的零點(diǎn):

  (1)(代數(shù)法)求方程的實(shí)數(shù)根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù)。

  1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

  3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。

  高考數(shù)學(xué)常考知識(shí)點(diǎn)總結(jié)6

  一、函數(shù)

  1.函數(shù)的基本概念

  函數(shù)的概念,函數(shù)的單調(diào)性,函數(shù)的奇偶性,這些屬于函數(shù)的基本概念,已經(jīng)在高一數(shù)學(xué)必修一中有了詳細(xì)的介紹,在此不再贅述。

  2.指數(shù)函數(shù)

  單調(diào)性是指數(shù)函數(shù)的重要性質(zhì),特別是函數(shù)圖象的無限伸展性,x軸是函數(shù)圖象的漸近線,當(dāng)0+∞,y->0;當(dāng)a>1時(shí),x->-∞,y->0;當(dāng)a>1時(shí),a的值越大,第一象限內(nèi)圖象越靠近y軸,遞增的速度越快;

  3.對數(shù)函數(shù)

  對數(shù)函數(shù)的性質(zhì)是每年高考的必考內(nèi)容之一,其中單調(diào)性和對數(shù)函數(shù)的定義域是熱點(diǎn)問題,其單調(diào)性取決于底數(shù)與“1”的大小關(guān)系.

  二、三角函數(shù)

  1.命題趨勢

  高考可能仍會(huì)將三角函數(shù)概念、同角三角函數(shù)的關(guān)系式和誘導(dǎo)公式作為基礎(chǔ)內(nèi)容,融于三角求值、化簡及解三角形的考查中.由該部分知識(shí)的基礎(chǔ)性決定這一部分知識(shí)可以和其他知識(shí)融合考查,高考中需要關(guān)注.

  2.三角函數(shù)式的化簡要遵循“三看”原則

 。1)一看“角”,這是最重要的一環(huán),通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式.

 。2)二看”函數(shù)名稱”,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有”切化弦”

  (3)三看”結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,常見的有“遇到分式要通分”等.多做三角函數(shù)練習(xí)題會(huì)對更加熟悉的`掌握三角函數(shù)有幫助,這里給大家推薦李老師教的三角函數(shù)解題法。

  三、導(dǎo)數(shù)

  1.導(dǎo)數(shù)的概念

  1)如果當(dāng)Δx-->0時(shí),Δy/Δx-->常數(shù)A,就說函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并把A叫做f(x)在點(diǎn)x0處的導(dǎo)數(shù)(瞬時(shí)變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線的斜率.瞬時(shí)速度就是位移函數(shù)s對時(shí)間t的導(dǎo)數(shù).

  2)如果函數(shù)f(x)在開區(qū)間(a,b)內(nèi)每一點(diǎn)都可導(dǎo),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個(gè)新的函數(shù),叫做f(x)在開區(qū)間(a,b)內(nèi)導(dǎo)數(shù),記作f’(x).

  3)如果函數(shù)f(x)在點(diǎn)x0處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)x0處連續(xù).

  2.函數(shù)的導(dǎo)數(shù)與導(dǎo)數(shù)值的區(qū)別與聯(lián)系:導(dǎo)數(shù)是原來函數(shù)的導(dǎo)函數(shù),而導(dǎo)數(shù)值是導(dǎo)函數(shù)在某一點(diǎn)的函數(shù)值,導(dǎo)數(shù)值是常數(shù).

  3.求導(dǎo)

  在高中數(shù)學(xué)導(dǎo)數(shù)求導(dǎo)過程中,要仔細(xì)分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式,對于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形,對于比較復(fù)雜的函數(shù),如果直接套用求導(dǎo)法則,會(huì)使求導(dǎo)過程繁瑣冗長,且易出錯(cuò),此時(shí),可將解析式進(jìn)行合理變形,轉(zhuǎn)化為教易求導(dǎo)的結(jié)構(gòu)形

【高考數(shù)學(xué)?贾R(shí)點(diǎn)總結(jié)】相關(guān)文章:

數(shù)學(xué)高考必考知識(shí)點(diǎn)總結(jié)11-12

浙科版生物必修一?贾R(shí)點(diǎn)10-26

高二數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)04-25

高考化學(xué)知識(shí)點(diǎn)總結(jié)02-08

數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)04-25

數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)04-25

小學(xué)數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)04-25

數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-25

數(shù)學(xué)命題知識(shí)點(diǎn)總結(jié)04-25