亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

丙烷脫氫制丙烯低溫分離工藝分析

時間:2023-05-01 03:56:50 資料 我要投稿
  • 相關(guān)推薦

丙烷脫氫制丙烯低溫分離工藝分析

第39卷第7期2011年7月

化學(xué)t程

CHEMICAL

V01.39No.7Jul.20ll

ENCINEERlNC(CHINA)

丙烷脫氫制丙烯低溫分離工藝分析

賈兆年,高海見

(中國石化集團(tuán)寧波工程有限公司,浙江寧波315103)

摘要:為確立丙烷脫氫制丙烯工藝中低溫分離單元的最佳制冷流程,采用PRo/Ⅱ8.2化工流程模擬軟件,對低溫

分離單元進(jìn)行模擬計算,考察了溫度和壓力對低溫分離效果的影響,分析并確立了最佳分離溫度和壓力范圍;在分

離效果相同的前提下,分別比較了丙烯+乙烯級聯(lián)制冷、丙烯預(yù)冷+混合制冷和丙烯預(yù)冷+富氫氣膨脹制冷3種制冷流程的公用工程消耗以及各自的優(yōu)缺點。結(jié)果表明:產(chǎn)品壓縮機(jī)出口壓力對分離效果影響較小。在確保下游

裝置能夠正常操作的情況下,分離壓力應(yīng)盡可能低;分離溫度是影響分離效果的主要因素,較為經(jīng)濟(jì)的分離溫度為一90一一100℃;相對于其他2種流程,丙烯+乙烯級聯(lián)制冷流程具有技術(shù)成熟、能耗低和操作簡單等優(yōu)點,更適合于丙烷脫氫制丙烯_1=藝。

關(guān)鍵詞:丙烯;丙烷脫氫;低溫分離中圖分類號:TQ

2ll;rIE08

文獻(xiàn)標(biāo)識碼:A

文章編號:1005鶘54(2011)cr7舢3彤

AnalysisoflowtemperaturerecoVeryuIlitiIlpropane

JIA

dehydrogenationtopropyleneprocess

(Sinopec

Ak渤疆ct:’rbdetenIline

Ningbotlle

Zhao-出蛐,GAoHai.ji蚰

Engin∞ringCo.,nd.,Ningbo315103,功eji肌gProvi眥e,Cllina)

refhger砒ingmetllodf打low

L1Runit

dehyd嘴nation

of

o—maltempemtu肥r優(yōu)overy(L1rR)IlIIit

in

pmp舡地

to

pmpylene

p眥嘲,tlle8imul枷。璐of

Ont}IepmIni∞of

w啪pe而咖edby

tIIe

tempemtu他舳dp弛鹋u弛傭∞pamtione&ctionwe地蛐alysed.,舳d

o州mal哪6鋤tempe呲吡e蚰d

f如tor矗)r吐屺眈p眥ti∞胡&曲n

tlIe

PRo/Ⅱ8.2.-11leiIlnue腫髓

tI地8蛐e8epmtione任&tion,tIIeutilityc(m鯽mp6伽瑪衄d

featu嘲ofpmpyle鵬+etIIyleneca8cade耐hger撕on,pmpyleI地p陀-cooled+MixedRe銜ge啪£Cycle(MRC)

p陀8sⅢ嗆rangeswe陀accluired.

墑gemti蚰蚰dpmpylenep弛-c00led+hydmgen—exp觚8ion確gemti∞we他compdred.Ther憾tIlt8how8tIIm

tlledi∞h呻薩pre褐u颮ofCh盯ge

G鵬Comp托8∞r(CGC)i8

signific蛐t

i11fluence

not

tlle

import鋤t

of

uIIit,buttlIetemper砒眥℃h∞tlle

on

tlIe眙p哪tion

r∞ult,肌d

tempemtumi8f南m一9()to一100℃.ComparedwitlltIIeotlIer

h吣確ge瑚血ngmetllod8,pmpylene+ethyle眥

and∞syopemliTIg,

econ砌c8ep日枷傭

ca靶ade叫矗ge枷onh聃腫madV舳tagessuch鵲Iligll弛liabil畸,lowe眥Egyco嚙um面onetc.,的tllismetlIodi8mo陀sui訕lef.orpmp明edehydmgenationtopmpyleneproce夠.

Keywords:pmpylene;propanedehydrogen砒ion;law

temperatu陀嗽overy

目前已工業(yè)化的丙烷脫氫工藝均由反應(yīng)、產(chǎn)品壓縮、低溫分離、產(chǎn)品精制等幾個部分組成,其中壓縮和低溫分離系統(tǒng)是保證下游產(chǎn)品分離單元正常操作和產(chǎn)品質(zhì)量的關(guān)鍵環(huán)節(jié),也是本裝置的主要耗能單元,“三機(jī)”(產(chǎn)品壓縮機(jī)、丙烯制冷機(jī)及乙烯制冷

丙烷脫氫制丙烯技術(shù)是在異丁烷脫氫制異丁烯

的基礎(chǔ)上發(fā)展而來的,作為—腫工業(yè)化生產(chǎn)工藝已

有近20年的歷史,但由于歷史上丙烷原料的價格高、丙烯產(chǎn)品低廉,加上此類裝置投資較高,使其應(yīng)

用受到限制。近些年來,隨著丙烯需求的不斷增長

以及丙烷脫氫工藝技術(shù)的發(fā)展帶來投資成本和操作費用的降低,使得丙烷脫氫制丙烯技術(shù)有著更為廣闊的市場前景。

收稿日期:20l

I旬l?13

機(jī))能耗約占總耗能的70%qO%。因此,本文將

重點分析低溫分離系統(tǒng),并比較壓力、溫度以及制冷方式等因素對分離系統(tǒng)的影響。

作奢簡介:賈兆年(1964一),男。高級工程師.主要從事化工設(shè)計l高海見.通訊聯(lián)系人,電話:(0574)盯974771.E-叫Iil:鼬j.∞∽@?in?

op∞-c鋤o

?94?

化學(xué)工程2011年第39卷第7期

l工藝流程

度越低越有利于烴類分離,低溫分離排放氣中的丙烷和丙烯夾帶量越少,氫氣的純度越高。為達(dá)到較為理想的分離效果,減小下游產(chǎn)品精餾單元的負(fù)荷,低溫

典型的丙烷脫氫制丙烯流程可分為原料預(yù)處理、脫氫反應(yīng)、產(chǎn)品壓縮干燥、低溫分離及產(chǎn)品精制(包括脫乙烷塔和脫丙烷塔)等單元,流程示意圖見圖l。

Ct+

分離溫度通常在一9卜一100℃。在此溫度區(qū)間可

以選擇的制冷方式有丙烯+乙烯級聯(lián)制冷、丙烯預(yù)冷+混合制冷及丙烯預(yù)冷+富氫氣膨脹制冷。1.1丙烯+乙烯級聯(lián)制冷

丙烯、乙烯級聯(lián)制冷是石化T業(yè)上常用的制冷方式。乙烯、丙烯分別經(jīng)過各自的壓縮機(jī)壓縮后,再經(jīng)逐級冷卻冷凝,然后凝液在不同的壓力下閃蒸,為低溫分離冷箱提供不同溫度級別的冷劑。理論上,從提高冷量利用率看,閃蒸級數(shù)越多和制冷溫度級越多,冷量利用效率越高,但相應(yīng)的設(shè)備投資費用相應(yīng)增加,操作也越為復(fù)雜。圖2為丙烯、乙烯級聯(lián)制冷流程示意圖,CWS,CWR分別指循環(huán)冷卻水上水、回水。產(chǎn)品氣經(jīng)壓縮機(jī)增壓后,分別經(jīng)過循環(huán)水和13℃丙烯冷卻至16℃進(jìn)入分子篩脫水床層,脫水后的產(chǎn)品氣(水露點降低至一70℃以下)進(jìn)入到冷箱逐步冷卻至一95℃左右。在此過程中丙烯制冷分別提供13,O,一38℃的冷量,乙烯制冷則提供一65,一100℃的冷量。

富氫氣至變爪吸附

液鑲轔:竺!,—志

或丙烷

脯鬯嶇盤豇噸孽母—卣

.匾麗荔而面

o.

巫匿蛩嶇

t■

氫氣循環(huán)

lI

燃料氣+——壓玎市瓦司

—丁一

高純氫氣副產(chǎn)品

圈l丙烷脫氫制丙烯流程

Fig.1

聊ical

sche刪IticdilI盱吼ofpmp明e

to

dehydro鏟fIationpmpylene

反應(yīng)器出口物料的壓力通常為微正壓(甚至負(fù)壓),需由壓縮機(jī)增壓至下游產(chǎn)品分離所需的壓力,在確定壓縮機(jī)出口壓力時需綜合考慮制冷方式、丙

髟丙烯收率、氫氣用戶所需壓力以及操作費用等因

素,力求找到最佳平衡點。低溫分離的目的則是為了將反應(yīng)物中的氫氣、cH。等與輕烴最大程度地分離,盡可能多地回收丙烷、丙烯。一般,壓力越高、溫

圈2丙烯、乙烯級聯(lián)制冷流程

Fig.2

P】m∞鶴fldwdiq辨m0f

pIDpylel艙越hylene瑚Bc8de尚群粕6∞

一級的冷劑,輕組分則繼續(xù)冷凝并依次分離、節(jié)流、蒸發(fā),為熱物流提供不同溫度級的冷量。

1.了丙烯預(yù)冷+富氫氣膨脹制冷

1.2丙烯預(yù)冷+混合制冷

混合制冷工藝(MRC)最早應(yīng)用于天然氣液化裝置,是在級聯(lián)式工藝的基礎(chǔ)上演變而來的,采用烴類混合物(如:N2,C。,C:,C,,C。,C,)作為制冷劑,代替級聯(lián)式工藝中的多個純組分體系,以優(yōu)化與熱物流之間的傳熱溫差,達(dá)到提高傳熱效率的目的。其制冷劑組成根據(jù)原料氣的組成和壓力而定。丙烯預(yù)冷+混合制冷則是在單級混合制冷工藝基礎(chǔ)上增加了丙烯預(yù)冷回路,使得流程更為節(jié)能。圖3為丙烯預(yù)冷+混合制冷流程示意圖,經(jīng)冷卻干燥后的產(chǎn)品氣進(jìn)人預(yù)冷冷箱,用丙烯產(chǎn)品氣和混合制冷劑預(yù)冷至一35℃,混合冷劑中的重組分先冷凝,凝液經(jīng)分離減壓后作為下

富氫氣膨脹制冷則是利用冷箱分離出的高壓富氫氣經(jīng)等熵膨脹后產(chǎn)生的低溫氣體作為冷劑返回冷箱。圖4為丙烯預(yù)冷+富氫氣膨脹制冷流程示意圖,首先利用丙烯將產(chǎn)品氣冷卻至一35℃左右,再利用分離出的富氫氣膨脹提供更低溫度的冷量,將物流中的重組分冷凝下來,輕組分送入膨脹機(jī),重組分則送人脫乙烷塔。。膨脹后的富氫氣能夠提供≤一100℃的冷量。富氫氣的壓力可由膨脹機(jī)驅(qū)動的壓縮機(jī)增壓至—個合適的壓力,以滿足下游用戶需求。

賈兆年等丙烷脫氫制丙烯低溫分離工藝分析

富氫氣至變壓吸附

?95?

圈3丙烯預(yù)冷+混合制冷流程

Fig.3

P脫嘲ndw

diaFam0f

pmpyle∞pm?c∞led&MRC弛fh伊瑚畸∞

機(jī)

變壓吸附

圈4丙烯預(yù)冷+富氯氣膨脹制冷流程

Fig.4

Pl∞嘲flawdiag咖l0f

propylel他p地.cooIed&hydl唧_e珥哪i∞陀缸薩埔ti蚰

定上游的脫氫反應(yīng)單元和下游的產(chǎn)品精制單元采用相同的工藝和操作條件,且能耗相同的前提下,比較了3種制冷流程的經(jīng)濟(jì)性。各流程中主要工藝參數(shù)見表2。其中流程1,2,3分別代表丙烯+乙烯級聯(lián)制冷、丙烯預(yù)冷+混合制冷和丙烯預(yù)冷+富氫氣膨

脹制冷,以下相同。

裒l產(chǎn)品壓縮機(jī)入口條件?

TabIel

Suctionconditionsofcha瑁e齲scomp他s∞rH2

CH.1.26

C2H4O.63

C2H6O.44

C3H618.72

C3H821.84

2模擬計算與分析

2.1流程模擬

為了便于分析,本文以表l中的組成為例來對低溫分離單元進(jìn)行模擬計算分析,此組分中未考慮C。+和少量水,CO,CO:,N2等組分。模擬采用SIM.SCl公司的PRo/Ⅱ8.2軟件。由于產(chǎn)品氣組成主要為輕烴,且涉及到氣液二相平衡,為保證較高的精確度,熱力學(xué)方法將采用SRI(s方程,氣、液相焓值計算采用Ll(P方程,液相密度采用COSTALD方法。本文通過PR0/Ⅱ8.2軟件分別對上述3個低溫分離過程進(jìn)行了模擬,分析了產(chǎn)品壓縮機(jī)出口壓力、低溫分離溫度等參數(shù)對分離效果的影響。在假

摩爾分?jǐn)?shù)/%57.1l

?溫度40℃.壓力一O.03MPa(g),流量l∞∥h。

裹2主要工藝參數(shù)’7I址le2Pmc姻spammete隋

?表中壓力均為表壓。

.96?

化學(xué)工程2011年第39卷第7期

為了保證流程模擬的合理性與準(zhǔn)確性,模擬過程中充分考慮了冷箱在不同溫度段的冷損失,冷損失量取值如表3所示,壓縮機(jī)和膨脹機(jī)效率分別按85%和80%來考慮。

表3各溫度段冷箱冷損

’I’able3

Assumedheadeakf如torsatdiffbrenttemperatures

溫度/℃

冷箱冷損/%

溫度/℃

冷箱冷損/%

90—401.600.3—501.9—100.6—652.4—200.9—752.7—27

1.1

—10l

3.5

2.2結(jié)果與討論

2.2.1分離壓力和溫度的選擇

圖5為一75℃分離溫度下不同產(chǎn)品壓縮機(jī)(CGC)出口壓力對丙烯收率的影響圖,從圖中可

以看出:壓縮機(jī)出口壓力由0.8MPa(g)增加至

3.6

MPa(g)時,丙烯收率由95.57%增加至

98.66%,只增加了3.09%,而壓縮機(jī)軸功率卻增

加了6

110.96

kW,這說明壓力對分離效果的影響

較小,產(chǎn)品壓縮機(jī)出口壓力太大將大大增加壓縮功耗,在確保下游裝置正常操作的前提下,產(chǎn)品壓縮機(jī)的出口壓力應(yīng)盡量低,以降低能耗。從圖5中還可以看出,壓力在1MPa(g)左右最為經(jīng)濟(jì),大于此值分離效果改善不明顯,能耗卻增加較快。本文將按照1.1MPa(g)產(chǎn)品壓縮機(jī)出口壓力對流程l和2的低溫分離系統(tǒng)進(jìn)行分析;而對于流程3,由于采用膨脹機(jī)制冷,膨脹機(jī)上游需要更高的壓力,為了能夠提供足夠低的冷量,產(chǎn)品壓縮機(jī)出

口壓力定為2.2MPa(g)。圖6為1.1MPa(g)和

2.2

MPa(g)壓力下不同溫度對丙烯收率的影響,從圖中可以看出:分離溫度由一30℃降低至一130℃時,丙烯收率分別由65%,83%增加至

99.2%,99.6%,這說明溫度是決定分離效果的主要因素。但是當(dāng)分離溫度降低至一定程度時,對分離效果的影響將逐漸減弱,此時若繼續(xù)降低分離溫度則會大大增加能耗。因此,分離溫度的確定十分關(guān)鍵,選擇的溫度太高則分離效果不理想,選擇過低的分離溫度則會大大地增加分離成本。工業(yè)上為了不至于采用更低能級的制冷系統(tǒng),分離溫度一般選擇在一90一一100℃。

產(chǎn)品壓縮機(jī)出n壓力/MPa(g)

圖5產(chǎn)品壓縮機(jī)出口壓力對丙烯收率的影響

Fig.5

E玨融ofdi∞hargep嗍哦0fCGc蚰pmplye鵬yield

分離溫度,℃圈6

溫度對丙烯收率的影響

隱.6

EⅡ&tof

t唧畔礙lum仰pr叩ly蛐e

yield

2.2.2

3種制冷流程比較

低溫分離單元主要消耗的公用工程為循環(huán)水和電(壓縮機(jī)為電機(jī)驅(qū)動),本文對3種制冷方式分別進(jìn)行了模擬計算,計算結(jié)果如圖7及表4。其中圖7為按照100L/h流量的產(chǎn)品氣計算的公用丁程消耗

量,從圖中可以看出3種流程循環(huán)水消耗較為接近,

流程2略微大些;而電力消耗有較大差別,流程2用電量最大,流程l和3較為接近。

日l乜日{

盾環(huán)水

2500=女:

』^

‘l

2000

o加博№¨£!●

l500犍

囂8l000

6●

—I≥=\堪襄御

4500姆

2o

圈7

3種淹程公用工程消耗■

ng.7

Utility∞瑚um叫。岫0ftlll氍na帥

表4低溫分離單元每t丙烯產(chǎn)品耗能

1曲le4

Energy

co吣岫pti咖p盯tolI

pmpylene

pmduc“n

L1RurIit

oftllI儻nows

公用工程

煎堡

備注

賈兆年等丙烷脫氫制丙烯低溫分離工藝分析

?97?

表4為單位丙烯產(chǎn)品的公用工程消耗量,并按

照sH/T3llO一200l《石油化工設(shè)計能力消耗計算

氣壓力很低,需要l臺壓縮機(jī)進(jìn)行增壓,因此,壓縮機(jī)數(shù)量也為3臺套,與前2個流程相比,流程3還增加一臺膨脹機(jī),因而,操作也更為復(fù)雜。

裹5各流程設(shè)備數(shù)量

方法》將其折算為標(biāo)油的計算結(jié)果。從表中可以看出流程2的能耗最高,其次為流程3,而流程l最低。這說明對于丙烷脫氫制丙烯裝置采用丙烯+乙烯級聯(lián)制冷方式最為節(jié)能。對于流程3雖然產(chǎn)品壓縮機(jī)的功率較大,但由于產(chǎn)品氣中的氫氣含量較高,采用富氫氣膨脹能夠提供充足的冷量,可以節(jié)省一40一一100℃之間的制冷功率;另一方面由于產(chǎn)品壓縮機(jī)出口壓力較高,丙烯制冷的功率也能有所降低,因此,綜合來看流程3的能耗并不會太高。

表5為初步估算的各流程所需的設(shè)備數(shù)量。流程1和2分別采用了2個制冷系統(tǒng),因此。壓縮機(jī)均需要3臺套,而靜設(shè)備數(shù)量二者基本接近,因而與流程1相比流程2并無經(jīng)濟(jì)優(yōu)勢可言,相反由于其采用多元制冷系統(tǒng),反而會增加操作上的復(fù)雜性;流程3雖然只有一個制冷系統(tǒng),但由于膨脹機(jī)出口富氫

1址le 丙烷脫氫制丙烯低溫分離工藝分析 5

Equipment

nurrd塒ofth陀e

now8

表6分別比較了3種制冷流程的優(yōu)缺點,從表中可以看出,丙烯+乙烯級聯(lián)制冷具有投資小、能耗低、技術(shù)成熟和操作簡單等特點,與其他2種流程相比更具優(yōu)勢。

裹6制冷流程優(yōu)缺點比較

Thble6

Merits蚰d

derneri塢of1.Iree

no啪

3結(jié)論[2]

[3]

肖錦堂.烷烴催化脫氫生產(chǎn)c,一c.烯烴工藝之二

[J].天然氣工業(yè),1994,14(3):69-71.

(1)采用冷劑制冷方式時,產(chǎn)品壓縮機(jī)出口壓

力lMPa(g)左右最為經(jīng)濟(jì);采用富氫氣膨脹制冷

肖錦堂.烷烴催化脫氫生產(chǎn)C,一Q烯烴工藝之三

[J].天然氣工業(yè),1994,14(4):72.76.

時,產(chǎn)品壓縮機(jī)出口壓力一般大于2MPa(g)。

(2)分離溫度一般在一90一一100℃,這樣既能保證分離效果,又不至于采用能級更低的制冷系統(tǒng)。

(3)3種制冷流程中,丙烯+乙烯級聯(lián)制冷制冷流程最為節(jié)能,設(shè)備數(shù)量不會太多。操作上也更為簡單,具有較大的優(yōu)勢。因而丙烯+乙烯級聯(lián)制冷方式最適合于丙烷脫氫制丙烯裝置。參考文獻(xiàn):

[1]

肖錦堂.烷烴催化脫氫生產(chǎn)C,一C.烯烴工藝之一

[4]

肖錦堂.烷烴催化脫氫生產(chǎn)C,一c4烯烴工藝之四

[J].天然氣工業(yè),1994,14(6):64柳.

[5][6][7]

陳建九,史海英,汪永.丙烷脫氫制丙烯工藝技術(shù)[J].

精細(xì)石油化工進(jìn)展,2000,l(12):23.27.

蘇建偉,牛海寧.丙烷脫氫制丙烯技術(shù)進(jìn)展[J].化工

科技,2006,14(4):62彤.

郭洪輝,陳繼華.丙烷脫氫制丙烯技術(shù)研究[J].遼寧

化工,2007,36(4):266-269.

[8]余長林,葛慶杰,徐恒泳。等.丙烷脫氫制丙烯研究新

進(jìn)展[J].化工進(jìn)展,2006,25(9):977.981.[9]

王松漢.乙烯裝置技術(shù)與運行[M].北京:中國石化出版社,2009.

[J].天然氣工業(yè),1994,14(2):“彤.

丙烷脫氫制丙烯低溫分離工藝分析

作者:作者單位:刊名:英文刊名:年,卷(期):被引用次數(shù):

賈兆年, 高海見, JIA Zhao-nian, GAO Hai-jian中國石化集團(tuán)寧波工程有限公司,浙江寧波,315103化學(xué)工程

Chemical Engineering2011,39(7)1次

參考文獻(xiàn)(9條)

1.肖錦堂 烷烴催化脫氫生產(chǎn)C3~C4烯烴工藝之一 1994(02)2.肖錦堂 烷烴催化脫氫生產(chǎn)C3~C4烯烴工藝之二 1994(03)3.肖錦堂 烷烴催化脫氫生產(chǎn)C3~C4烯烴工藝之三 1994(04)4.肖錦堂 烷烴催化脫氫生產(chǎn)C3~C4烯烴工藝之四 1994(06)

5.陳建九,史海英,汪泳 丙烷脫氫制丙烯工藝技術(shù)[期刊論文]-精細(xì)石油化工進(jìn)展 2000(12)6.蘇建偉,牛海寧 丙烷脫氫制丙烯技術(shù)進(jìn)展[期刊論文]-化工科技 2006(4)7.郭洪輝,陳繼華 丙烷脫氫制丙烯技術(shù)研究[期刊論文]-遼寧化工 2007(4)

8.余長林,葛慶杰,徐恒泳,李文釗 丙烷脫氫制丙烯研究新進(jìn)展[期刊論文]-化工進(jìn)展 2006(9)9.王松漢 乙烯裝置技術(shù)與運行 2009

引證文獻(xiàn)(1條)

1.張琦,隋志軍,顧雄毅,周興貴 丙烷脫氫分離工藝的模擬與分析[期刊論文]-石油化工 2015(4)

引用本文格式:賈兆年.高海見.JIA Zhao-nian.GAO Hai-jian 丙烷脫氫制丙烯低溫分離工藝分析[期刊論文]-化學(xué)工程 2011(7)

【丙烷脫氫制丙烯低溫分離工藝分析】相關(guān)文章:

低溫生物膜中微生物脫氫酶活性分析04-30

焦?fàn)t煤氣制甲醇凈化工藝分析04-27

淺談濕法工藝技術(shù)分離稀土項目的工程分析04-27

遼寧堿蓬甜菜堿醛脫氫酶基因(BADH)啟動子分離及序列分析04-27

黃姜淀粉、纖維分離工藝研究04-27

甲醛腙、乙醛腙和丙烯醛腙的高效液相色譜分離分析條件的研究04-27

丙烯酸乳液生產(chǎn)工藝廢氣的處理研究04-26

環(huán)氧氯丙烷廢水處理新工藝的研究05-01

低溫水處理中的膜法工藝04-28