- 相關推薦
怎么證明兩直線平行
怎么證明兩直線平行(1)根據(jù)定義。證明兩個平面沒有公共點。
由于兩個平面平行的定義是否定形式,所以直接判定兩個平面平行較困難,因此通常用反證法證明。
(2)根據(jù)判定定理。證明一個平面內有兩條相交直線都與另一個平面平行。
(3)根據(jù)“垂直于同一條直線的兩個平面平行”,證明兩個平面都與同一條直線垂直。
2. 兩個平行平面的判定定理與性質定理不僅都與直線和平面的平行有邏輯關系,而且也和直線與直線的平行有密切聯(lián)系。就是說,一方面,平面與平面的平行要用線面、線線的平行來判定;另一方面,平面
與平面平行的性質定理又可看作平行線的判定定理。這樣,在一定條件下,線線平行、線面平行、面面平行就可以互相轉化。
3. 兩個平行平面有無數(shù)條公垂線,它們都是互相平行的直線。夾在兩個平行平面之間的公垂線段相等。
因此公垂線段的長度是唯一的,把這公垂線段的長度叫作兩個平行平面間的距離。顯然這個距離也等于其中一個平面上任意一點到另一個平面的垂線段的長度。
兩條異面直線的距離、平行于平面的直線和平面的距離、兩個平行平面間的距離,都歸結為兩點之間的距離。
1. 兩個平面的位置關系,同平面內兩條直線的位置關系相類似,可以從有無公共點來區(qū)分。因此,空間不重合的兩個平面的位置關系有:
(1) 平行—沒有公共點;
(2) 相交—有無數(shù)個公共點,且這些公共點的集合是一條直線。
注意:在作圖中,要表示兩個平面平行時,應把表示這兩個平面的平行四邊形畫成對應邊平行。
2. 兩個平面平行的判定定理表述為:
4. 兩個平面平行具有如下性質:
(1) 兩個平行平面中,一個平面內的直線必平行于另一個平面。
簡述為:“若面面平行,則線面平行”。
(2) 如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。
簡述為:“若面面平行,則線線平行”。
(3) 如果兩個平行平面中一個垂直于一條直線,那么另一個也與這條直線垂直。
(4) 夾在兩個平行平面間的平行線段相等
2
用反證法
A平面垂直與一條直線,
設平面和直線的交點為P
B平面垂直與一條直線,
設平面和直線的交點為Q
假設A和B不平行,那么一定有交點。
設有交點R,那么
做三角形 PQR
PR垂直PQ QR垂直PQ
沒有這樣的三角形。因為三角形的內角和為180
所以 A一定平行于B
【怎么證明兩直線平行】相關文章:
證明平行的方法01-02
證明線面平行04-28
兩條平行線04-29
兩條垂直直線的斜率之間的關系08-19
《兩條直線的交點坐標》教案設計08-13
單位證明范文怎么寫_證明06-26
離職證明怎么寫06-26
困難證明怎么寫01-14
資產證明怎么寫04-28
工資證明怎么寫?02-03