亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

向量證明正弦定理

時(shí)間:2023-04-29 18:47:12 證明范文 我要投稿
  • 相關(guān)推薦

向量證明正弦定理

向量證明正弦定理

表述:設(shè)三面角∠P-ABC的三個(gè)面角∠BPC,∠CPA,∠APB所對(duì)的二面角依次為∠PA,∠PB,∠PC,則 Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。

向量證明正弦定理

目錄

1證明2全向量證明

證明

過A做OA⊥平面BPC于O。過O分別做OM⊥BP于M與ON⊥PC于N。連結(jié)AM、AN。 顯然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。 另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。 則Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。 同理可證Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得證三面角正弦定理。

全向量證明

如圖1,△ABC為銳角三角形,過點(diǎn)A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°-A,j與向量CB的夾角為90°-C

由圖1,AC+CB=AB(向量符號(hào)打不出)

在向量等式兩邊同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,過點(diǎn)C作與向量CB垂直的單位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步驟1

記向量i ,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

∴a+b+c=0

則i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接著得到正弦定理

其他

步驟2.

在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步驟3.

證明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圓O.

作直徑BD交⊙O于D. 連接DA.

因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以∠DAB=90度

因?yàn)橥∷鶎?duì)的圓周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

類似可證其余兩個(gè)等式。

3

用向量叉乘表示面積則 s = CB 叉乘 CA = AC 叉乘 AB

=> absinC = bcsinA (這部可以直接出來哈哈,不過為了符合向量的做法)

=> a/sinA = c/sinC

2011-7-18 17:16 jinren92 | 三級(jí)

記向量i ,使i垂直于AC于C,△ABC三邊AB,BC,接著得到正弦定理 其他步驟2. 在銳角△ABC中,證明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,

4

過三角形ABC 的頂點(diǎn)A作BC邊上的高,垂足為D.(1)當(dāng)D落在邊BC上時(shí),向量AB 與向量AD 的夾角為90°-B ,向量AC 與向量AD 的夾角為90°-C ,由于向量AB、向量AC 在向量AD 方向上的射影相等,有數(shù)量積的幾何意義可知 向量AB*向量AD=向量AC*向量AD即 向量AB的絕對(duì)值*向量AD的絕對(duì)值*COS(90°-B)=向量的AC絕對(duì)值*向量AD的絕對(duì)值*cos(90°-C)所以 csinB=bsinC即b/sinB=c/sinC(2)當(dāng)D落在BC的延長(zhǎng)線上時(shí),同樣可以證得

【向量證明正弦定理】相關(guān)文章:

數(shù)學(xué)正弦定理教案02-12

高中數(shù)學(xué)正弦定理教案11-24

高中數(shù)學(xué)《正弦定理》教案07-19

《共面向量定理》的教學(xué)反思范文04-27

共線與共面向量定理的引申與應(yīng)用04-27

高中數(shù)學(xué)正弦定理教案(6篇)11-26

高中數(shù)學(xué)《正弦定理》教案4篇01-07

高中數(shù)學(xué)正弦定理教案6篇11-25

定理與證明教案12-28

垂心余弦定理證明04-28