亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

例談創(chuàng)造性思維的自我培養(yǎng)

時(shí)間:2023-04-30 20:52:14 教育論文 我要投稿
  • 相關(guān)推薦

例談創(chuàng)造性思維的自我培養(yǎng)

 

創(chuàng)造性思維是指不依常規(guī),尋求變異,想出新方法、建立新理論、從多方面尋求答案的開放式思維方式.

下面具體談?wù)剶?shù)學(xué)學(xué)習(xí)中,創(chuàng)造性數(shù)學(xué)思維如何自我培養(yǎng),供同學(xué)們參考.

1.培養(yǎng)發(fā)散思維

在數(shù)學(xué)教學(xué)中,通常是教師按照教材固有的知識(shí)結(jié)構(gòu),按照單向思維方式從題目的條件和結(jié)論出發(fā)聯(lián)想到已知的公理、定理、公式和性質(zhì),只從某一方向思考問題,采用某一方法解決問題,應(yīng)該說這種方式是解決問題的基本方法,但是長期按照這種方式去思考問題就會(huì)形成“思維定勢(shì)”,嚴(yán)重制約了同學(xué)們的創(chuàng)造性思維.因此同學(xué)們?cè)跀?shù)學(xué)學(xué)習(xí)中要逐步養(yǎng)成用發(fā)散性思維去思考問題,經(jīng)常運(yùn)用一題多思、一題多解、一題多變等思索方法,顯得十分重要.

例如,已知a+b=l,a>0,b>0,求的最小值.根據(jù)題目的結(jié)構(gòu)特征,可以從三角、數(shù)列、不等式、方程、函數(shù)、幾何以及常數(shù)更換等各種背景下進(jìn)行一題多思,從而一題多解,而且通過比較,尋求最佳解法,例如(常數(shù)更換)可能是解決此類題的最佳方法;還可進(jìn)一步通過改變或調(diào)換題設(shè)和結(jié)論以及將條件和結(jié)論拓廣進(jìn)行一題多變訓(xùn)練,例如本題可拓廣出:已知(P,Q,R為正常數(shù)),且 a>0,b>0,c>0,求ma+nb+c(m,n,為正常數(shù))的最小值.通過訓(xùn)練,同學(xué)們可以嘗試到用發(fā)散思維方法從多個(gè)方面思考問題的全新感覺,加深了對(duì)知識(shí)的理解,提高了思維能力.

2.善用逆向思維

正向思維是從題給的已知條件出發(fā),按條件的先后順序,按常規(guī)的思路去研究某一數(shù)學(xué)問題,而逆向思維就是倒過來想問題.解題過程中適時(shí)利用逆向思維逐漸培養(yǎng)自己的獨(dú)立思考能力,確實(shí)可獨(dú)辟溪徑,突破難點(diǎn),化繁為簡.

例如,若函數(shù) y=f(x)的圖象上的每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,然后再將整個(gè)圖象沿x軸向左平移個(gè)單位,沿y軸向下平移1個(gè)單位后所得圖象與的圖象相同,求f(x)的表達(dá)式.本題若按常規(guī)思維,應(yīng)設(shè)f(x)的解析

式,顯然較繁.同學(xué)們不妨逆向解題,一則可以培養(yǎng)逆向思維能力,二則解題過程簡單明了.具體過程如下:

3.構(gòu)建整體思維

整體思維是整體原理在數(shù)學(xué)中的反映.在數(shù)學(xué)解題中,同學(xué)們的思維不一定要集中在問題的個(gè)別部分,有時(shí)要將問題看作一個(gè)整體,通過研究問題的整體形式、整體結(jié)構(gòu)或作種種整體處理后,達(dá)到順利而又簡捷地解決問題的目的.

例如,求sinl0°sin30°sin50°sin70°的值.若將整個(gè)乘積看成一個(gè)整體,可得如下解法:設(shè)a=sinl0°sin30°sin50°sin70°,b=cosl0°cos30°cos50°cos70°兩式相乘然后運(yùn)用倍角公式后可解得。當(dāng)然,若把a(bǔ)轉(zhuǎn)化成:cos80°cos60°cos40°cos20°,則通過對(duì)上式整體結(jié)構(gòu)的解剖后,可由“連鎖反應(yīng)”即通過分子、分母都乘以8sin20°多次運(yùn)用倍角公式來解,顯得更為簡潔!

又如 2000年

[1] [2] 

【例談創(chuàng)造性思維的自我培養(yǎng)】相關(guān)文章:

例談學(xué)生數(shù)學(xué)探究能力的培養(yǎng)04-29

培養(yǎng)低年級(jí)學(xué)生創(chuàng)新能力例談04-26

例談中學(xué)化學(xué)實(shí)驗(yàn)審題能力的培養(yǎng)04-30

談初中物理教學(xué)中創(chuàng)造性思維的培養(yǎng)策略04-30

也談?wù)Z文教學(xué)中創(chuàng)造性思維的培養(yǎng)04-30

例談數(shù)學(xué)教學(xué)中學(xué)生思維品質(zhì)的培養(yǎng)04-30

談?dòng)⒄Z教學(xué)中學(xué)生創(chuàng)造性思維的培養(yǎng)04-30

知識(shí)“盲點(diǎn)”例談04-30

知識(shí)“盲點(diǎn)”例談04-30

例談多元解讀04-27