高一數(shù)學(xué)教學(xué)計(jì)劃(合集15篇)
時(shí)間的腳步是無(wú)聲的,它在不經(jīng)意間流逝,迎接我們的將是新的生活,新的挑戰(zhàn),立即行動(dòng)起來(lái)寫(xiě)一份計(jì)劃吧。想學(xué)習(xí)擬定計(jì)劃卻不知道該請(qǐng)教誰(shuí)?以下是小編為大家整理的高一數(shù)學(xué)教學(xué)計(jì)劃,希望對(duì)大家有所幫助。
高一數(shù)學(xué)教學(xué)計(jì)劃1
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5第一章:解三角形;重點(diǎn)是正弦定理與余弦定理;難點(diǎn)是正弦定理與余弦定理的應(yīng)用;第二章:數(shù)列;重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和;難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用;第三章:不等式;重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問(wèn)題、基本不等式;難點(diǎn)是二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問(wèn)題及應(yīng)用;
必修2第一章:空間幾何體;重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積;難點(diǎn)是空間幾何體的三視圖;第二章:點(diǎn)、直線、平面之間的位置關(guān)系;重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點(diǎn)是直線的傾斜角與斜率及直線方程;難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目;第四章:圓與方程;重點(diǎn)是圓的方程及直線與圓的位置關(guān)系;難點(diǎn)是直線與圓的位置關(guān)系;
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識(shí)水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對(duì)學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺(jué)。
三、教學(xué)目的要求
1.通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的'探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題和與測(cè)量及幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。
2.通過(guò)日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識(shí)解決相應(yīng)的問(wèn)題。
3.理解不等式(組)對(duì)于刻畫(huà)不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問(wèn)題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡(jiǎn)單的二元線性規(guī)劃問(wèn)題。
4.幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識(shí)和探索幾何圖形及其性質(zhì)的方法。先從對(duì)空間幾何體的整體觀察入手,認(rèn)識(shí)空間圖形及其直觀圖的畫(huà)法;再以長(zhǎng)方體為載體,直觀認(rèn)識(shí)和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語(yǔ)言表述有關(guān)平行、垂直的性質(zhì)與判定,對(duì)某些結(jié)論進(jìn)行論證。另外了解一些簡(jiǎn)單幾何體的表面積與體積的計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會(huì)數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問(wèn)題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時(shí)對(duì)學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
五、教學(xué)進(jìn)度
周次 | 課、章、節(jié) | 教 學(xué) 內(nèi) 容 | 備 注 |
1 | 1.1,1.2 | 解三角形 | |
2 | 1.2 | 解三角形 | |
3 | 2.1,2.2 | 數(shù)列的概念與簡(jiǎn)單表示法,等差數(shù)列 | |
4 | 2.3 | 等差數(shù)列的前n項(xiàng)和 | |
5 | 2.4,2.5 | 等比數(shù)列及前n項(xiàng)和 | |
6 | 2.5 | ||
7 | 3.1,3.2 | 不等關(guān)系與不等式,一元二次不等式及其解法 | |
8 | 3.3,3.4 | 二元一次不等式(組)與簡(jiǎn)單線性規(guī)劃問(wèn)題,基本不等式 | |
9 | 考試,復(fù)習(xí) | ||
10 | 期中考試 | ||
11 | 1.1,1.2 | 空間幾何體的結(jié)構(gòu),三視圖,直觀圖 | |
12 | 1.3 | 空間幾何體的表面積與體積 | |
13 | 2.1,2.2 | 空間點(diǎn)、直線、平面的位置關(guān)系,直線、平面平行的判定及其性質(zhì) | |
14 | 2.3 | 直線、平面的判定及其性質(zhì) | |
15 | 3.1,3.2 | 直線的傾斜角與斜率,直線方程 | |
16 | 3.3 | 直線的交點(diǎn)坐標(biāo)與距離公式 | |
17 | 4.1,4.2 | 圓的方程,直線、圓的位置關(guān)系 | |
18 | 4.3 | 空間直角坐標(biāo)系 | |
19 | 復(fù)習(xí) | ||
20 | 考試 |
高一數(shù)學(xué)教學(xué)計(jì)劃2
教學(xué)目標(biāo)
1通過(guò)對(duì)冪函數(shù)概念的學(xué)習(xí)以及對(duì)冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗(yàn)數(shù)學(xué)概念的形成過(guò)程,培養(yǎng)學(xué)生的抽象概括能力。
2使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運(yùn)用所學(xué)知識(shí)解決有關(guān)問(wèn)題,培養(yǎng)學(xué)生的靈活思維能力。
3培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類(lèi)比法在研究問(wèn)題中的作用。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):冪函數(shù)的性質(zhì)及運(yùn)用
難點(diǎn):冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過(guò)程
教學(xué)方法:問(wèn)題探究法 教具:多媒體
教學(xué)過(guò)程
一、創(chuàng)設(shè)情景,引入新課
問(wèn)題1:如果張紅購(gòu)買(mǎi)了每千克1元的水果w千克,那么她需要付的錢(qián)數(shù)p(元)和購(gòu)買(mǎi)的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問(wèn)題2:如果正方形的邊長(zhǎng)為a,那么正方形的面積 ,這里S是a的函數(shù)。 問(wèn)題3:如果正方體的邊長(zhǎng)為a,那么正方體的體積 ,這里V是a的函數(shù)。 問(wèn)題4:如果正方形場(chǎng)地面積為S,那么正方形的邊長(zhǎng) ,這里a是S的函數(shù) 問(wèn)題5:如果某人 s內(nèi)騎車(chē)行進(jìn)了 km,那么他騎車(chē)的速度 ,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個(gè)數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個(gè)函數(shù)解析式有什么共同點(diǎn)嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的'一類(lèi)函數(shù)的幾個(gè)具體代表,如果讓你給他們起一個(gè)名字的話,你將會(huì)給他們起個(gè)什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個(gè)角度)(引入新課,書(shū)寫(xiě)課題)
二、新課講解
由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱(chēng)為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱(chēng)為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類(lèi)重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對(duì)冪函數(shù)來(lái)說(shuō),底數(shù)是自變量,指數(shù)是常數(shù) 對(duì)指數(shù)函數(shù)來(lái)說(shuō),指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個(gè)冪函數(shù)?
、 y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學(xué)生獨(dú)立思考、回答)
2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對(duì)數(shù)函數(shù)研究了哪些內(nèi)容?
(學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)
3冪函數(shù)的定義域是否與對(duì)數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù) 不同,定義域并不完全相同,應(yīng)區(qū)別對(duì)待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時(shí),其表達(dá)式y(tǒng)=x0=1;定義域?yàn)?-∞,0)U(0,+∞),特別強(qiáng)調(diào),當(dāng)x為任何非零實(shí)數(shù)時(shí),函數(shù)的值均為1,圖象是從點(diǎn)(0,1)出發(fā),平行于x軸的兩條射線,但點(diǎn)(0,1)要除外。)
例2寫(xiě)出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)對(duì)照比較。引導(dǎo)學(xué)生具體問(wèn)題具體分析,并作簡(jiǎn)單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫(xiě)成正數(shù)指數(shù)再寫(xiě)出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)
4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?
(學(xué)生思考,引導(dǎo)作圖可得。并加上y=x 和y=x-1圖象)接下來(lái), 在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯(cuò)誤之處。教師利用幾何畫(huà)板演示。見(jiàn)后附圖1
讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點(diǎn)?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密性。)
教師總評(píng):冪函數(shù)的性質(zhì)
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過(guò)點(diǎn)(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過(guò)原點(diǎn),并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時(shí),圖象在y軸右方無(wú)限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無(wú)限地趨近x軸。
5通過(guò)觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時(shí),這一類(lèi)函數(shù)有哪種性質(zhì)?
學(xué)生思考,教師講評(píng):(1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時(shí),函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時(shí),函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習(xí) 寫(xiě)出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。
例4簡(jiǎn)單應(yīng)用1:比較下列各組中兩個(gè)值的大小,并說(shuō)明理由:
、0.75 ,0.76 ;
、(-0.95) ,(-0.96) ;
、0.23 ,0.24 ;
④0.31 ,0.31
例5簡(jiǎn)單應(yīng)用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。
例6簡(jiǎn)單應(yīng)用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結(jié)
今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?
1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別 2、 常見(jiàn)冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
布置作業(yè):
課本p.73 2、3、4、思考5
高一數(shù)學(xué)教學(xué)計(jì)劃3
一、學(xué)生情景分析
本學(xué)期擔(dān)任高一森林班的數(shù)學(xué)教學(xué)工作,學(xué)生共有66人,大部分學(xué)生學(xué)習(xí)習(xí)慣好,學(xué)習(xí)目標(biāo)明確、勤奮、主動(dòng),學(xué)習(xí)動(dòng)力足,少數(shù)同學(xué)質(zhì)疑“學(xué)習(xí)是否有用”;另外,少數(shù)學(xué)生不能正確評(píng)價(jià)自我,這給教學(xué)工作帶來(lái)了必須的難度,在學(xué)習(xí)中取得長(zhǎng)足的提高,必須要引導(dǎo)他們,擺正學(xué)習(xí)態(tài)度,讓他們體會(huì)到學(xué)習(xí)的樂(lè)趣,學(xué)習(xí)給他們帶來(lái)的成就感,提高他們學(xué)習(xí)的進(jìn)取性,還要不斷的鼓勵(lì)他們,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣。
二、教學(xué)目標(biāo)
1、由數(shù)學(xué)活動(dòng)、故事等等,經(jīng)過(guò)分析問(wèn)題的方法的教學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
2、注意從實(shí)例出發(fā),從感性提高到理性,供給生活背景,經(jīng)過(guò)動(dòng)手建立幾何模型,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。
3、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的.數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。經(jīng)過(guò)不一樣形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
4、提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
5、提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。
6、經(jīng)過(guò)定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問(wèn)題的背景事實(shí)及具體數(shù)據(jù)的記憶。發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
7、加強(qiáng)知識(shí)的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。
8、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
三、教材分析
本學(xué)期學(xué)習(xí)的資料主要有集合,函數(shù)和空間幾何體,這些都是高中數(shù)學(xué)的基礎(chǔ)知識(shí),其中函數(shù)更是高中數(shù)學(xué)的學(xué)習(xí)重點(diǎn),也是學(xué)習(xí)其他資料的必備基礎(chǔ),空間幾何是高考中不可忽略的重要部分,在教學(xué)上要注重學(xué)生的邏輯思維本事、空間想象本事的培養(yǎng)及自學(xué)本事的逐步構(gòu)成。
四、教學(xué)措施
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事就解決實(shí)際問(wèn)題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的本事。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不一樣的教材資料選擇不一樣教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用本事的培養(yǎng)。
高一數(shù)學(xué)教學(xué)計(jì)劃4
教學(xué)目標(biāo) :
(1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;
(2)了解全集、空集的意義,
(3)掌握有關(guān)的符號(hào)及表示方法,會(huì)用它們正確表示一些簡(jiǎn)單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;
(4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;
(5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來(lái),培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;
(6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問(wèn)題、解決問(wèn)題的能力.
教學(xué)重點(diǎn):子集、補(bǔ)集的概念
教學(xué)難點(diǎn) :弄清元素與子集、屬于與包含之間的區(qū)別
教學(xué)用具:幻燈機(jī)
教學(xué)過(guò)程 設(shè)計(jì)
(一)導(dǎo)入 新課
上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí).
【提出問(wèn)題】(投影打出)
已知 , , ,問(wèn):
1.哪些集合表示方法是列舉法.
2.哪些集合表示方法是描述法.
3.將集M、集從集P用圖示法表示.
4.分別說(shuō)出各集合中的元素.
5.將每個(gè)集合中的元素與該集合的關(guān)系用符號(hào)表示出來(lái).將集N中元素3與集M的關(guān)系用符號(hào)表示出來(lái).
6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.
【找學(xué)生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(筆練結(jié)合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (筆練結(jié)合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題.
(二)新授知識(shí)
1.子集
(1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。
記作: 讀作:A包含于B或B包含A
當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:A B或B A.
性質(zhì):① (任何一個(gè)集合是它本身的子集)
、 (空集是任何集合的子集)
【置疑】能否把子集說(shuō)成是由原來(lái)集合中的'部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.
因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的.空集也是B的子集,而這個(gè)集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.
(2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。
例: ,可見(jiàn),集合 ,是指A、B的所有元素完全相同.
(3)真子集:對(duì)于兩個(gè)集合A與B,如果 ,并且 ,我們就說(shuō)集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B.
【提問(wèn)】
(1) 寫(xiě)出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。
(2) 判斷下列寫(xiě)法是否正確
、 A ② A ③ ④A A
性質(zhì):
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;
(2)如果 , ,則 .
例1 寫(xiě)出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集與真子集符號(hào)的方向。
(2)易混符號(hào)
①“ ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}
、趝0}與 :{0}是含有一個(gè)元素0的集合, 是不含任何元素的集合。
如: {0}。不能寫(xiě)成 ={0}, ∈{0}
例2 見(jiàn)教材P8(解略)
例3 判斷下列說(shuō)法是否正確,如果不正確,請(qǐng)加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 與 不能同時(shí)成立.
解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確.空集是任何非空集合的真子集;
(3)不正確. 與 表示同一集合;
(4)不正確. 的所有子集是 ;
(5)正確
(6)不正確.當(dāng) 時(shí), 與 能同時(shí)成立.
例4 用適當(dāng)?shù)姆?hào)( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)設(shè) , , ,則A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.
【練習(xí)】教材P9
用適當(dāng)?shù)姆?hào)( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提問(wèn):見(jiàn)教材P9例子
(二) 全集與補(bǔ)集
1.補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作 ,即
.
A在S中的補(bǔ)集 可用右圖中陰影部分表示.
性質(zhì): S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};
(2)若A={0},則 NA=N*;
(3) RQ是無(wú)理數(shù)集。
2.全集:
如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用表示.
注: 是對(duì)于給定的全集 而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同.
例如:若 ,當(dāng) 時(shí), ;當(dāng) 時(shí),則 .
例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.
高一數(shù)學(xué)教學(xué)計(jì)劃5
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識(shí)和基本技能的教學(xué),注意參透教學(xué)思想和方法,針對(duì)學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法。
數(shù)學(xué)目標(biāo)要求
1、理解集合及充要條件的有關(guān)知識(shí),掌握不等式的性質(zhì),一元二次不等式、絕對(duì)值不等的解法,掌握函數(shù)的概念及指數(shù)函數(shù),對(duì)函數(shù)和幕函數(shù)的性質(zhì)和圖象。
2、理解角的概念的推廣和三角函數(shù)的定義,掌握基本的三角函數(shù)公式和三角函數(shù)巔峰性質(zhì)、圖像,理解三角函數(shù)的周期性
3、理解數(shù)列的概念,掌握等差數(shù)列和等比數(shù)列的性質(zhì),并會(huì)求等差數(shù)列、等比數(shù)列前n項(xiàng)的和。
4、掌握平面向量時(shí)有關(guān)概念和運(yùn)算,掌握直線和圓的方程的求法。
5、掌握空間幾何直線、平面之間的位置關(guān)系及其判定方法。
6、掌握概率與統(tǒng)計(jì)初步里的計(jì)數(shù)原理,理解三種抽樣方法,會(huì)求簡(jiǎn)單問(wèn)題的概率。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識(shí)的內(nèi)外結(jié)構(gòu),熟練掌握知識(shí)和邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材教學(xué)形式,內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確吧握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,把握新大綱對(duì)知識(shí)點(diǎn)的基本要求,防止自覺(jué)不自覺(jué)地對(duì)教材加深加寬。同時(shí),在整體上要重視數(shù)學(xué)應(yīng)用;重視教學(xué)思想方法的參透。
3、樹(shù)立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實(shí)施的出發(fā)點(diǎn)和歸宿,教師必須面向全體學(xué)生因材施材,以學(xué)生為賬戶(hù)提,構(gòu)建新的認(rèn)識(shí)體系,營(yíng)造有利于學(xué)生的氛圍。
4、發(fā)揮教材的.多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);組織好研究性課題的教學(xué),讓學(xué)生感受社會(huì)生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、加強(qiáng)課堂研究,科學(xué)設(shè)計(jì)教學(xué)方法。根據(jù)教材的內(nèi)容和特征,實(shí)行啟發(fā)式和討論式教學(xué)。發(fā)揚(yáng)教學(xué)民主,師生雙方親切合作,交流互動(dòng),讓學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展的過(guò)程。根據(jù)材料個(gè)章節(jié)的重難點(diǎn)制定教學(xué)專(zhuān)題,積累教學(xué)經(jīng)驗(yàn)。
6、落實(shí)課外活動(dòng)內(nèi)容,組織和加強(qiáng)數(shù)學(xué)興趣小組的活動(dòng)內(nèi)容,加強(qiáng)對(duì)高層次學(xué)生的競(jìng)賽輔導(dǎo),培養(yǎng)拔尖人才。
三、教學(xué)進(jìn)度
高一上學(xué)期
高一下學(xué)期
周次內(nèi)容
周次內(nèi)容
1-4復(fù)習(xí)初中知識(shí)和集合1-3數(shù)列
5充要條件
4-6平面向量
6-7不等式7-9直線的方程
8-10
函數(shù)10期中考試
11
期中考試11-12圓的方程
12-14指數(shù)函數(shù)與對(duì)數(shù)函數(shù)13-15
立體幾何
15-18三角函數(shù)16-18概率與統(tǒng)計(jì)初步
19-20期末、總復(fù)習(xí)、考試19-20
總復(fù)習(xí)與期末考試
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。
高一數(shù)學(xué)教學(xué)計(jì)劃6
一、學(xué)生狀況分析
學(xué)生整體水平一般,成績(jī)以中等為主,中上不多,后進(jìn)生也有一些。幾個(gè)班中,從上課一周來(lái)看,學(xué)生的學(xué)習(xí)進(jìn)取性還是比較高,愛(ài)問(wèn)問(wèn)題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)》,教材在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可理解性等,具有親和力、問(wèn)題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點(diǎn)線平面間的位置關(guān)系;直線與方程;圓與方程)。
三、教學(xué)任務(wù)
本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。
2、提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
3、提高學(xué)生提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹(shù)立新的教學(xué)理念,以“雙基”教學(xué)為主要資料,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
教學(xué)方法及推進(jìn)措施
六、相關(guān)措施:
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢(mèng)想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長(zhǎng),應(yīng)對(duì)新教材的我們也是邊摸索邊改變,樹(shù)立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過(guò)渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
。2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)資料,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過(guò)早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,本事要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
。3)培養(yǎng)學(xué)生解答考題的本事,經(jīng)過(guò)例題,從形式和資料兩方應(yīng)對(duì)所學(xué)知識(shí)進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
。4)讓學(xué)生經(jīng)過(guò)單元考試,檢測(cè)自我的實(shí)際應(yīng)用本事,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開(kāi)數(shù)學(xué)奧競(jìng)選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用本事的.培養(yǎng)。
。7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹(shù)立勇于克服困難與戰(zhàn)勝困難的信心。
。8)合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問(wèn)、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
(9)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實(shí)際問(wèn)題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
(10)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的本事。
(11)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)理解知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。
七、教學(xué)進(jìn)度安排:
。裕
高一數(shù)學(xué)教學(xué)計(jì)劃7
一 指導(dǎo)思想
為了使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿(mǎn)足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下:
1.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
2.提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力
3.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
4.提高學(xué)習(xí)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
二 學(xué)情分析
1. 基本情況:班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約 人,后進(jìn)生約人。
2.我所執(zhí)教的215班均屬普高班,學(xué)生自覺(jué)性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺(jué)性。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
三 教材分析
我們采用的教材是人教版必修教材,本冊(cè)教材共分兩章:第四章《三角函數(shù)》和第五章《平面向量》。三角函數(shù)的主要內(nèi)容有:任意角的三角函數(shù)概念、弧度制、同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式、兩角和與差的三角函數(shù)、二倍角的三角函數(shù)以及三角函數(shù)的圖象和性質(zhì)、已知三角函數(shù)值求角等。難點(diǎn)是弧度制的概念、綜合運(yùn)用本章公式進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)及恒等式的證明周期函數(shù)的概念,函數(shù)y=Asin(x+)的圖象與正弦曲線的關(guān)系。平面向量主要內(nèi)容是向量及其運(yùn)算和解斜三角形,向量的幾何表示和坐標(biāo)表示、向量的線性運(yùn)算,平面向量的數(shù)量積,平面兩點(diǎn)間的距離公式,線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,平移公式,解斜三角形是本章的重點(diǎn),而向量運(yùn)算法則的理解和運(yùn)用,已知兩邊和其中一邊的對(duì)角解斜三角形等是本章的難點(diǎn)。
四 教法分析
在教學(xué)過(guò)程中盡量做到以下幾個(gè)方面:
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2. 通過(guò)觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
五 教學(xué)及輔導(dǎo)措施
1. 激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2. 注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3. 加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4. 抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5. 自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6. 重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
六 優(yōu)、差生名單及輔導(dǎo)措施
1. 對(duì)于優(yōu)生:學(xué)生自愿成立興趣小組,興趣小組可以在老師的指導(dǎo)下由學(xué)生自己不定期的開(kāi)展活動(dòng),圍繞數(shù)學(xué)競(jìng)賽拓展他們的知識(shí)面,加深對(duì)所學(xué)知識(shí)的理解和應(yīng)用,在原有基礎(chǔ)上,穩(wěn)定班級(jí)在數(shù)學(xué)學(xué)習(xí)鐘的尖子學(xué)生,進(jìn)一步培養(yǎng)他們自主學(xué)習(xí)的意識(shí)。
2. 對(duì)于待發(fā)展生:對(duì)于成績(jī)較差的學(xué)生,針對(duì)他們的基礎(chǔ)差異和個(gè)性差異,耐心細(xì)致的進(jìn)行個(gè)別輔導(dǎo),有問(wèn)題隨時(shí)解決,并多予以鼓勵(lì)。在作業(yè)中體現(xiàn)分層。盡量做到因材施教。
七 教學(xué)進(jìn)度安排
周 次 | 課時(shí) | 內(nèi) 容 | 重 點(diǎn)、難 點(diǎn) |
第1周 | 5 | 任意角和弧度制(2) 任意角的三角函數(shù)(3) | 了解任意角的概念和弧度制,能進(jìn)行弧度與角度的互化。任意角三角函數(shù)的`定義。 |
第2周 | 5 | 同角三角函數(shù)的基本關(guān)系式(3) 三角函數(shù)的誘導(dǎo)公式(2) | 誘導(dǎo)公式的探究。運(yùn)用誘導(dǎo)公式。 |
第3周 | 5 | 兩角和與差的正弦、余弦、正切 (5) | 兩角和與差的公式及其應(yīng)用與求值、化簡(jiǎn) |
第4周 | 5 | 二倍角的正弦、余弦、正切 (3) 正、余弦函數(shù)的圖象(2) | 三角函數(shù)的倍角公式、和差化積公式 正、余弦函數(shù)圖象的畫(huà)法 |
第5周 | 5 | 三角函數(shù)圖象與性質(zhì)(4) | 三角函數(shù)的圖象及其性質(zhì)。函數(shù)思想。 |
第6周 | 5 | 函數(shù)y=sin(+)的圖象(2)、三角函數(shù)模型的簡(jiǎn)單應(yīng)用(2) | 用參數(shù)思想討論圖象的變換過(guò)程。用三角模型解決一些具有周期變化規(guī)律的實(shí)際問(wèn)題。難點(diǎn):實(shí)際問(wèn)題抽象為三角函數(shù)模型 |
第7周 | 5 | 正切函數(shù)的圖象和性質(zhì)(3) 已知三角函數(shù)值求角(2) | 正切函數(shù)的圖象和性質(zhì) 反三角函數(shù)的表示 |
第8周 | 5 | 三角函數(shù)單元復(fù)習(xí) | 知識(shí)點(diǎn)的復(fù)習(xí)+練習(xí)卷 |
第9周 | 5 | 平面向量的實(shí)際背景及基本概念(2)、平面向量的線性運(yùn)算(2) | 向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運(yùn)算及幾何意義。向量數(shù)乘運(yùn)算及幾何意義。 |
第10周 | 5 | 平面向量的基本定理及坐標(biāo)表示(2) 平面向量的數(shù)量積(2) | 平面向量基本定理。會(huì)用平面向量數(shù)量積的表示向量的模與夾角。 |
第11周 | 5 | 平面向量的應(yīng)用舉例(2) | 用向量方法解決實(shí)際問(wèn)題的方法。向量方法解決幾何問(wèn)題的三步曲。 |
第12周 | 5 | 向量平移、正弦定理、余弦定理 | 向量平移的公式 |
第13周 | 5 | 簡(jiǎn)單的三角恒等變換(3) 第三章小結(jié)(1) | 以11個(gè)公式為依據(jù),推導(dǎo)和差化積、積化和差等公式,會(huì)進(jìn)行三角變換。 |
第14周 | 5 | 期末復(fù)習(xí) | |
第15周 | 5 | 期末復(fù)習(xí) | 分章歸納復(fù)習(xí)+3套模擬測(cè)試 |
高一數(shù)學(xué)教學(xué)計(jì)劃8
一、具體目標(biāo):
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。經(jīng)過(guò)不一樣形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
3、提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的'鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)……
二、本學(xué)期要到達(dá)的教學(xué)目標(biāo)
1、雙基要求:
在基礎(chǔ)知識(shí)方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其資料反映出來(lái)的數(shù)學(xué)思想和方法。在基本技能方面能按照必須的程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計(jì)數(shù)器及簡(jiǎn)單的推理、畫(huà)圖。
2、本事培養(yǎng):
能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,構(gòu)成良好的思維品質(zhì);會(huì)根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問(wèn)題的情景設(shè)計(jì)運(yùn)算途徑;會(huì)提出、分析和解決簡(jiǎn)單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問(wèn)題,并進(jìn)行交流,構(gòu)成數(shù)學(xué)的意思;從而經(jīng)過(guò)獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問(wèn)題,進(jìn)行探索和研究。
3、思想教育:
培養(yǎng)高一學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實(shí)事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價(jià)值,并懂的數(shù)學(xué)來(lái)源于實(shí)踐又反作用于實(shí)踐的觀點(diǎn);數(shù)學(xué)中普遍存在的對(duì)立統(tǒng)一、運(yùn)動(dòng)變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn)。
三、進(jìn)度授課計(jì)劃及進(jìn)度表
。裕
高一數(shù)學(xué)教學(xué)計(jì)劃9
新學(xué)期已開(kāi)始,為使新學(xué)期的工作有條不紊的進(jìn)行,使教學(xué)工作更加科學(xué)合理,使學(xué)生對(duì)知識(shí)的接收更加得心應(yīng)手,特訂新學(xué)期個(gè)人教學(xué)計(jì)劃如下
一,指導(dǎo)思想
加強(qiáng)現(xiàn)代教育理論的學(xué)習(xí),提高自身的素質(zhì),轉(zhuǎn)變教育觀念,以教育科研為先導(dǎo),以培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力為重點(diǎn),深化課堂教學(xué)改革,大力推進(jìn)素質(zhì)教育。
二,教材分析
本冊(cè)教材具有以下幾個(gè)明顯的特點(diǎn):
1。為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn)
教科書(shū)提供了大量數(shù)學(xué)活動(dòng)的線索,作為所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。目的是使學(xué)生能夠在所提供的學(xué)習(xí)情景中,通過(guò)探索與交流等活動(dòng),獲得必要的發(fā)展。
2,向?qū)W生提供現(xiàn)實(shí),有趣,富有挑戰(zhàn)性的學(xué)習(xí)素材
教科書(shū)從學(xué)生實(shí)際出發(fā),用他們熟悉或感興趣的問(wèn)題情景引入學(xué)習(xí)主題,并提供了眾多有趣而富有數(shù)學(xué)含義的問(wèn)題,以展開(kāi)數(shù)學(xué)探究。
3,為學(xué)生提供探索,交流的時(shí)間與空間
教科書(shū)依據(jù)學(xué)生已有的知識(shí)背景和活動(dòng)經(jīng)驗(yàn),提供了大量的操作,思考與交流的機(jī)會(huì),幫助學(xué)生通過(guò)思考與交流,梳理所學(xué)的知識(shí),建立符合個(gè)體認(rèn)知特點(diǎn)的知識(shí)結(jié)構(gòu)。
4,展現(xiàn)數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程
教科書(shū)采用"問(wèn)題情境—建立模型—解釋?zhuān)瑧?yīng)用與拓展"的模式展開(kāi),有利于學(xué)生更好地理解數(shù)學(xué),應(yīng)用數(shù)學(xué),增強(qiáng)學(xué)好數(shù)學(xué)的信心。
5,滿(mǎn)足不同學(xué)生的發(fā)展需求
教科書(shū)中"讀一讀"給學(xué)生以更多了解數(shù)學(xué),研究數(shù)學(xué)的機(jī)會(huì)。教科書(shū)中的習(xí)題分為兩類(lèi):一類(lèi)面向全體學(xué)生;另一類(lèi)面向有更多數(shù)學(xué)需求的學(xué)生。
三,教材的重點(diǎn)和難點(diǎn)
本冊(cè)教材從內(nèi)容上看,教學(xué)重點(diǎn)是三角形和四邊形的性質(zhì)定理
和判定定理的應(yīng)用以及一元二次方程的應(yīng)用。教學(xué)難點(diǎn)是對(duì)反
比例函數(shù)的理解及應(yīng)用;用試驗(yàn)或模擬試驗(yàn)的方法估計(jì)一些復(fù)
雜的隨機(jī)時(shí)間發(fā)生的概率。
四,教學(xué)措施:
1,根據(jù)學(xué)生實(shí)際,創(chuàng)造性地使用教材,積極開(kāi)發(fā)和利用各種教學(xué)資源,為學(xué)生提供豐富多彩的學(xué)習(xí)素材。
2,加強(qiáng)直觀教學(xué),充分利用教具,學(xué)具等多媒體教學(xué),以豐富學(xué)生感知認(rèn)識(shí)對(duì)象的途徑,促使他們更加樂(lè)意接近數(shù)學(xué),更好地理解數(shù)學(xué)。
3,關(guān)注學(xué)生的個(gè)體差異,有效的實(shí)施有差異的教學(xué),使每個(gè)學(xué)生都能得到充分的發(fā)展。
4,加強(qiáng)學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),主要培養(yǎng)學(xué)生的書(shū)寫(xiě),認(rèn)真分析問(wèn)題的習(xí)慣。同時(shí)注意學(xué)習(xí)態(tài)度的培養(yǎng)。
五,時(shí)間安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函數(shù)
6月1日——6月10日頻率與概率
6月11日——7月11日復(fù)習(xí)考試
>高中數(shù)學(xué)教學(xué)計(jì)劃10
本學(xué)期我擔(dān)任高一(5)、(16)班的數(shù)學(xué)教學(xué)工作,本學(xué)期的教學(xué)工作計(jì)劃如下。
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開(kāi),《課程方案》提出了“教育要面向世界,面向未來(lái),面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來(lái)的思想方法,概率、統(tǒng)計(jì)的初步知識(shí),計(jì)算機(jī)的使用等。
。2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類(lèi)比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力。
(3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過(guò)收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問(wèn)題的思維方法和操作方法。
。6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)情分析及相關(guān)措施:
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的`生成等等矛盾沖突伴隨著高一新生的成長(zhǎng),面對(duì)新教材的我們也是邊摸索邊改變,樹(shù)立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過(guò)渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過(guò)早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。。
。3)培養(yǎng)學(xué)生解答考題的能力,通過(guò)例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
。4)讓學(xué)生通過(guò)單元考試,檢測(cè)自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
。5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開(kāi)數(shù)學(xué)奧競(jìng)選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
。6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高一數(shù)學(xué)教學(xué)計(jì)劃10
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))
必修5第一章:解三角形。重點(diǎn)是正弦定理與余弦定理。難點(diǎn)是正弦定理與余弦定理的應(yīng)用。第二章:數(shù)列。重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和。難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用。第三章:不等式。重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問(wèn)題、基本不等式。難點(diǎn)是二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問(wèn)題及應(yīng)用。
必修2第一章:空間幾何體。重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積。難點(diǎn)是空間幾何體的三視圖。第二章:點(diǎn)、直線、平面之間的位置關(guān)系。重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì)。第三章:直線與方程。重點(diǎn)是直線的傾斜角與斜率及直線方程。難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目。第四章:圓與方程。重點(diǎn)是圓的方程及直線與圓的位置關(guān)系。難點(diǎn)是直線與圓的位置關(guān)系。
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識(shí)水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對(duì)學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺(jué)。
三、教學(xué)目的要求
1、通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題和與測(cè)量及幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。
2、通過(guò)日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法,了解數(shù)列是一種特殊的函數(shù)。理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識(shí)解決相應(yīng)的問(wèn)題。
3、理解不等式(組)對(duì)于刻畫(huà)不等關(guān)系的意義和價(jià)值。掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問(wèn)題。能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡(jiǎn)單的二元線性規(guī)劃問(wèn)題。
4、幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識(shí)和探索幾何圖形及其性質(zhì)的方法。先從對(duì)空間幾何體的整體觀察入手,認(rèn)識(shí)空間圖形及其直觀圖的畫(huà)法。再以長(zhǎng)方體為載體,直觀認(rèn)識(shí)和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語(yǔ)言表述有關(guān)平行、垂直的`性質(zhì)與判定,對(duì)某些結(jié)論進(jìn)行論證。另外了解一些簡(jiǎn)單幾何體的表面積與體積的計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會(huì)數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問(wèn)題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一。上好每一節(jié)課,及時(shí)對(duì)學(xué)生的思想進(jìn)行觀察與指導(dǎo)。課后進(jìn)行有效的輔導(dǎo)。進(jìn)行有效的課堂反思。
高一數(shù)學(xué)教學(xué)計(jì)劃11
一、教學(xué)目標(biāo):
1.通過(guò)高速公路上的實(shí)際例子,引起積極的思考和交流,從而認(rèn)識(shí)到生活中處處可以遇到變量間的依賴(lài)關(guān)系.能夠利用初中對(duì)函數(shù)的認(rèn)識(shí),了解依賴(lài)關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系.
2.培養(yǎng)廣泛聯(lián)想的能力和熱愛(ài)數(shù)學(xué)的態(tài)度.
二、教學(xué)重點(diǎn):
在于讓學(xué)生領(lǐng)悟生活中處處有變量,變量之間充滿(mǎn)了關(guān)系
教學(xué)難點(diǎn):培養(yǎng)廣泛聯(lián)想的能力和熱愛(ài)數(shù)學(xué)的態(tài)度
三、教學(xué)方法:
探究交流法
四、教學(xué)過(guò)程
(一)、知識(shí)探索:
閱讀課文P25頁(yè)。實(shí)例:書(shū)上在高速公路情境下的問(wèn)題。
在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?
2.對(duì)問(wèn)題3,儲(chǔ)油量v對(duì)油面高度h、油面寬度w都存在依賴(lài)關(guān)系,兩種依賴(lài)關(guān)系都有函數(shù)關(guān)系嗎?
問(wèn)題小結(jié):
1.生活中變量及變量之間的依賴(lài)關(guān)系隨處可見(jiàn),并非有依賴(lài)關(guān)系的兩個(gè)變量都有函數(shù)關(guān)系,只有滿(mǎn)足對(duì)于一個(gè)變量的每一個(gè)值,另一個(gè)變量都有確定的值與之對(duì)應(yīng),才稱(chēng)它們之間有函數(shù)關(guān)系。
2.構(gòu)成函數(shù)關(guān)系的兩個(gè)變量,必須是對(duì)于自變量的每一個(gè)值,因變量都有確定的y值與之對(duì)應(yīng)。
3.確定變量的依賴(lài)關(guān)系,需分清誰(shuí)是自變量,誰(shuí)是因變量,如果一個(gè)變量隨著另一個(gè)變量的變化而變化,那么這個(gè)變量是因變量,另一個(gè)變量是自變量。
(二)、新課探究——函數(shù)概念
1.初中關(guān)于函數(shù)的定義:
2.從集合的觀點(diǎn)出發(fā),函數(shù)定義:
給定兩個(gè)非空數(shù)集A和B,如果按照某個(gè)對(duì)應(yīng)關(guān)系f,對(duì)于A中的任何一個(gè)數(shù)x,在集合B中都存在確定的`數(shù)f(x)與之對(duì)應(yīng),那么就把這種對(duì)應(yīng)關(guān)系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A.;
此時(shí)x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習(xí)慣上我們稱(chēng)y是x的函數(shù)。
定義域,值域,對(duì)應(yīng)法則
4.函數(shù)值
當(dāng)x=a時(shí),我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。
高一數(shù)學(xué)教學(xué)計(jì)劃12
本學(xué)期我擔(dān)任高一(3)、(4)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有138人。大部分學(xué)生初中的基礎(chǔ)較差,整體水平不高。從上課兩周來(lái)看,學(xué)生的學(xué)習(xí)進(jìn)取性還比較高,愛(ài)問(wèn)問(wèn)題的學(xué)生比較多;但由于基礎(chǔ)知識(shí)不太牢固,沒(méi)有良好的學(xué)習(xí)習(xí)慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學(xué)工作有必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
一、教學(xué)質(zhì)量目標(biāo)
(1)獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。
。2)培養(yǎng)學(xué)生的邏輯思維本事、運(yùn)算本事、空間想象本事,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的本事。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的本事;運(yùn)用歸納、演繹和類(lèi)比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的本事。
。3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
。4)使學(xué)生具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)經(jīng)過(guò)收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問(wèn)題的思維方法和操作方法。
。6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重職責(zé),既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合本事的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、教學(xué)目標(biāo)、
。ㄒ唬┣楦心繕(biāo)
。1)經(jīng)過(guò)分析問(wèn)題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)供給生活背景,經(jīng)過(guò)數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。
。3)在探究基本函數(shù)的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂(lè)趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評(píng)價(jià),提高學(xué)生的合作意識(shí)。
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
。5)還時(shí)間和空間給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維本事的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
(6)讓學(xué)生體驗(yàn)發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程法。
(二)本事要求
1、培養(yǎng)學(xué)生記憶本事。
。1)經(jīng)過(guò)定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問(wèn)題的背景事實(shí)及具體數(shù)據(jù)的記憶。
。2)經(jīng)過(guò)揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對(duì)應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運(yùn)算本事。
。1)經(jīng)過(guò)概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算本事。
(2)加強(qiáng)對(duì)概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算本事。
。3)經(jīng)過(guò)函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過(guò)程具有明晰性、合理性、簡(jiǎn)捷性本事。
。4)經(jīng)過(guò)一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算本事,促使知識(shí)間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算本事。
三、學(xué)情分析
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢(mèng)想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長(zhǎng),應(yīng)對(duì)新教材的我們也是邊摸索邊改變,樹(shù)立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過(guò)渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
四、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施
重點(diǎn)工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹(shù)立新的.教學(xué)理念,以雙基教學(xué)為主要資料,堅(jiān)持抓兩頭、帶中間、整體推進(jìn),使每個(gè)學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹(shù)立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問(wèn)、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)學(xué)生解答考題的本事,經(jīng)過(guò)例題,從形式和資料兩方應(yīng)對(duì)所學(xué)知識(shí)進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
4、讓學(xué)生經(jīng)過(guò)單元考試,檢測(cè)自我的實(shí)際應(yīng)用本事,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
5、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的本事。
6、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實(shí)際問(wèn)題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育;同時(shí)重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用本事的培養(yǎng)。
7、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)理解知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。
8、注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)、所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)資料,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過(guò)早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,本事要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
高一數(shù)學(xué)教學(xué)計(jì)劃13
指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開(kāi),《課程方案》提出了教育要面向世界,面向未來(lái),面向現(xiàn)代化和教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來(lái)的思想方法,概率、統(tǒng)計(jì)的初步知識(shí),計(jì)算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類(lèi)比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過(guò)收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問(wèn)題的思維方法和操作方法。
(6)本學(xué)期是高一的`重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
學(xué)情分析及相關(guān)措施:
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長(zhǎng),面對(duì)新教材的我們也是邊摸索邊改變,樹(shù)立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過(guò)渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn).所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過(guò)早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。.
(3)培養(yǎng)學(xué)生解答考題的能力,通過(guò)例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過(guò)單元考試,檢測(cè)自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開(kāi)數(shù)學(xué)奧競(jìng)選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
教學(xué)進(jìn)度安排:
周 次 時(shí) 內(nèi) 容 重 點(diǎn)、難 點(diǎn)
第1周
9.2~9.6 5 集合的含義與表示、
集合間的基本關(guān)系、
會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;會(huì)求給定子集的補(bǔ)集;。難點(diǎn):理解概念
第2周
9.7~9.13 5 集合的基本運(yùn)算
函數(shù)的概念、
函數(shù)的表示法 能使用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;能簡(jiǎn)單應(yīng)用
第3周
9.14~9.20 5 單調(diào)性與最值、
奇偶性、實(shí)習(xí)、小結(jié) 學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義
第4周
9.21~9.27 5 指數(shù)與指數(shù)冪的運(yùn)算、
指數(shù)函數(shù)及其性質(zhì) 掌握冪的運(yùn)算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。難點(diǎn):理解概念
第5周
9.28~10.4 5 (9月月考?、國(guó)慶放假)
第6周
10.5~10.11 5 對(duì)數(shù)與對(duì)數(shù)運(yùn)算、
對(duì)數(shù)函數(shù)及其性質(zhì) 理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式;探索并了解對(duì)數(shù)函數(shù)單調(diào)性與特殊點(diǎn);知道指數(shù)函數(shù)與對(duì)數(shù)函數(shù)互為反函數(shù)
第7周
10.12~10.18 5 冪函數(shù) 從五個(gè)具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認(rèn)識(shí)冪函數(shù)的一些性質(zhì)
第8周
10.19~10.25 5 方程的根與函數(shù)零點(diǎn),
二分法求方程近似解, 能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;
第9周
10.26~11.1 5 幾類(lèi)不同增長(zhǎng)的模型、函數(shù)模型應(yīng)用舉例 對(duì)比指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)增長(zhǎng)差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類(lèi)型增長(zhǎng)的含義
第10周
11.2~11.8 期中復(fù)習(xí)及考試 分章歸納復(fù)習(xí)+1套模擬測(cè)試
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函數(shù) 了解任意角的概念和弧度制,能進(jìn)行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16~11.22 5 三角函數(shù)的誘導(dǎo)公式
三角函數(shù)的圖像和性質(zhì) 借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫(huà)出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23~11.29 5 函數(shù)y=Asin(wx+q)的圖像 借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì),借助計(jì)算機(jī)畫(huà)出圖像觀察A w q對(duì)函數(shù)圖像變化的影響
第14周
11.30~12.6 5 三角函數(shù)模型的簡(jiǎn)單應(yīng)用 單元考試 會(huì)用三角函數(shù)解決一些簡(jiǎn)單實(shí)際問(wèn)題,體會(huì)三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7~12.13 5 平面向量的實(shí)際背景及基本概念,平面向量的線性運(yùn)算 掌握向量加、減法的運(yùn)算,理解其幾何意義掌握數(shù)乘運(yùn)算及兩個(gè)向量共線的含義了解平面向量的基本定理掌握正交分解及坐標(biāo)表示、會(huì)用坐標(biāo)表示平面向量的加減及數(shù)乘運(yùn)算
第16周
12.14~12.20 5 平面向量的基本定理及坐標(biāo)表示,平面向量的數(shù)量積, 理解用坐標(biāo)表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會(huì)平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面,向量數(shù)量積的運(yùn)算、求夾角、及垂直關(guān)系
第17周
12.21~12.27 5 平面向量應(yīng)用舉例,
小結(jié) 用向量方法解決莫些簡(jiǎn)單的平面幾何問(wèn)題、力學(xué)問(wèn)題與其他一些實(shí)際問(wèn)題的過(guò)程,體會(huì)向量是一種幾何問(wèn)題,物理問(wèn)題的工具,發(fā)展運(yùn)算能力和解決實(shí)際問(wèn)題的能力
第18周
12.28~1.3 5 兩角和與差點(diǎn)正弦、余弦和正切公式 能以?xún)山遣铧c(diǎn)余弦公式導(dǎo)出兩角和與差點(diǎn)正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系
第19周
1.4~1.10 5 簡(jiǎn)單的三角恒等變換
期末復(fù)習(xí)
高一數(shù)學(xué)教學(xué)計(jì)劃14
一 設(shè)計(jì)思想:
函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,是銜接初等數(shù)學(xué)與高等數(shù)學(xué)的紐帶,再加上函數(shù)與方程還是中學(xué)數(shù)學(xué)四大數(shù)學(xué)思想之一,是具體事例與抽象思想相結(jié)合的體現(xiàn),在教學(xué)過(guò)程中,我采用了自主探究教學(xué)法。通過(guò)教學(xué)情境的設(shè)置,讓學(xué)生由特殊到一般,有熟悉到陌生,讓學(xué)生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學(xué)生的成就感,激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情。在現(xiàn)實(shí)生活中函數(shù)與方程都有著十分重要的應(yīng)用,因此函數(shù)與方程在整個(gè)高中數(shù)學(xué)教學(xué)中占有非常重要的地位。
二 教學(xué)內(nèi)容分析:
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)》的新增內(nèi)容之一,選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教課書(shū)數(shù)學(xué)I必修本(A版)》第94—95頁(yè)的第三章第一課時(shí)3。1。1方程的根與函數(shù)的的零點(diǎn)。
本節(jié)通過(guò)對(duì)二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個(gè)數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形。它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對(duì)函數(shù)知識(shí)的`總結(jié)拓展。之后將函數(shù)零點(diǎn)與方程的根的關(guān)系在利用二分法解方程中(3。1。2)加以應(yīng)用,通過(guò)建立函數(shù)模型以及模型的求解(3。2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。
總之,本節(jié)課滲透著重要的數(shù)學(xué)思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學(xué)好中學(xué)數(shù)學(xué)打下一個(gè)良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。
三 教學(xué)目標(biāo)分析:
知識(shí)與技能:
1。結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;
2。結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;
3。結(jié)合幾類(lèi)基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間 的方法
情感、態(tài)度與價(jià)值觀:
1。讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問(wèn)題時(shí)的意義與價(jià)值;
2。培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣;
3。使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂(lè)趣與成功感
教學(xué)重點(diǎn):函數(shù)零點(diǎn)與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點(diǎn)的判定方法。
教學(xué)難點(diǎn):發(fā)現(xiàn)與理解方程的根與函數(shù)零點(diǎn)的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點(diǎn)的方法。
四 教學(xué)準(zhǔn)備
導(dǎo)學(xué)案,自主探究,合作學(xué)習(xí),電子交互白板。
五 教學(xué)過(guò)程設(shè)計(jì):略
六、探索研究(可根據(jù)時(shí)間和學(xué)生對(duì)知識(shí)的接受程度適當(dāng)調(diào)整)
討論:請(qǐng)大家給方程的一個(gè)解的大約范圍,看誰(shuí)找得范圍更。
[師生互動(dòng)]
師:把學(xué)生分成小組共同探究,給學(xué)生足夠的自主學(xué)習(xí)時(shí)間,讓學(xué)生充分研究,發(fā)揮其主觀能動(dòng)性。也可以讓各組把這幾個(gè)題做為小課題來(lái)研究,激發(fā)學(xué)生學(xué)習(xí)潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。
生:分組討論,各抒己見(jiàn)。在探究學(xué)習(xí)中得到數(shù)學(xué)能力的提高
第五階段設(shè)計(jì)意圖:
一是為用二分法求方程的近似解做準(zhǔn)備
二是小組探究合作學(xué)習(xí)培養(yǎng)學(xué)生的創(chuàng)新能力和探究意識(shí),本組探究題目就是為了培養(yǎng)學(xué)生的探究能力,此組題目具有較強(qiáng)的開(kāi)放性,探究性,基本上可以達(dá)到上述目的。
七、課堂小結(jié):
零點(diǎn)概念
零點(diǎn)存在性的判斷
零點(diǎn)存在性定理的應(yīng)用注意點(diǎn):零點(diǎn)個(gè)數(shù)判斷以及方程根所在區(qū)間
八、鞏固練習(xí)(略)
小編為大家提供的高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃格式,大家仔細(xì)閱讀了嗎?最后祝同學(xué)們學(xué)習(xí)進(jìn)步。
高一數(shù)學(xué)教學(xué)計(jì)劃15
(一)教學(xué)目標(biāo)
1.知識(shí)與技能
(1)理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運(yùn)算結(jié)果,體會(huì)直觀圖對(duì)理解抽象概念的作用。
(3)掌握的關(guān)的術(shù)語(yǔ)和符號(hào),并會(huì)用它們正確進(jìn)行集合的并集與交集運(yùn)算。
2.過(guò)程與方法
通過(guò)對(duì)實(shí)例的分析、思考,獲得并集與交集運(yùn)算的法則,感知并集和交集運(yùn)算的實(shí)質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問(wèn)題,研究問(wèn)題的創(chuàng)新意識(shí)和能力.
3.情感、態(tài)度與價(jià)值觀
通過(guò)集合的并集與交集運(yùn)算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)思想認(rèn)識(shí)客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.
(二)教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):交集、并集運(yùn)算的含義,識(shí)記與運(yùn)用.
難點(diǎn):弄清交集、并集的含義,認(rèn)識(shí)符號(hào)之間的區(qū)別與聯(lián)系
(三)教學(xué)方法
在思考中感知知識(shí),在合作交流中形成知識(shí),在獨(dú)立鉆研和探究中提升思維能力,嘗試實(shí)踐與交流相結(jié)合.
(四)教學(xué)過(guò)程
教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動(dòng) 設(shè)計(jì)意圖
提出問(wèn)題引入新知 思考:觀察下列各組集合,聯(lián)想實(shí)數(shù)加法運(yùn)算,探究集合能否進(jìn)行類(lèi)似“加法”運(yùn)算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無(wú)理數(shù)},
C = {x | x是實(shí)數(shù)}.
師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實(shí)數(shù)能進(jìn)行加減運(yùn)算,探究集合是否有相應(yīng)運(yùn)算.
生:集合A與B的元素合并構(gòu)成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運(yùn)算. 生疑析疑,
導(dǎo)入新知
形成
概念
思考:并集運(yùn)算.
集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱(chēng)C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱(chēng)為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請(qǐng)同學(xué)們將上述兩組實(shí)例的共同規(guī)律用數(shù)學(xué)語(yǔ)言表達(dá)出來(lái).
學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過(guò)合作交流,探究問(wèn)題共性,感知并集概念,從而初步理解并集的含義.
應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設(shè)集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時(shí),兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問(wèn)題.
注意利用數(shù)軸,運(yùn)用數(shù)形結(jié)合思想求解.
生:在數(shù)軸上畫(huà)出兩集合,然后合并所有區(qū)間. 同時(shí)注意集合元素的互異性. 學(xué)生嘗試求解,老師適時(shí)適當(dāng)指導(dǎo),評(píng)析.
固化概念
提升能力
探究性質(zhì) ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老師要求學(xué)生對(duì)性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.
形成概念 自學(xué)提要:
、儆蓛杉系乃性睾喜⒖傻脙杉系腵并集,而由兩集合的公共元素組成的集合又會(huì)是兩集合的一種怎樣的運(yùn)算?
、诮患\(yùn)算具有的運(yùn)算性質(zhì)呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱(chēng)為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識(shí),自我體會(huì)交集運(yùn)算的含義. 并總結(jié)交集的性質(zhì).
生:①A∩A = A;
、贏∩ = ;
、跘∩B = B∩A;
、蹵∩ ,A∩ .
師:適當(dāng)闡述上述性質(zhì).
自學(xué)輔導(dǎo),合作交流,探究交集運(yùn)算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).
應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學(xué)開(kāi)運(yùn)動(dòng)會(huì),設(shè)
A = {x | x是新華中學(xué)高一年級(jí)參加百米賽跑的同學(xué)},
B = {x | x是新華中學(xué)高一年級(jí)參加跳高比賽的同學(xué)},求A∩B.
例2 設(shè)平面內(nèi)直線l1上點(diǎn)的集合為L(zhǎng)1,直線l2上點(diǎn)的集合為L(zhǎng)2,試用集合的運(yùn)算表示l1,l2的位置關(guān)系. 學(xué)生上臺(tái)板演,老師點(diǎn)評(píng)、總結(jié).
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學(xué)高一年級(jí)中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級(jí)既參加百米賽跑又參加跳高比賽的同學(xué)}.
例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點(diǎn),平行或重合.
(1)直線l1,l2相交于一點(diǎn)P可表示為 L1∩L2 = {點(diǎn)P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學(xué)生的動(dòng)手實(shí)踐能力.
歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質(zhì):①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
、跘∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)
老師點(diǎn)評(píng)、闡述 歸納知識(shí)、構(gòu)建知識(shí)網(wǎng)絡(luò)
課后作業(yè) 1.1第三課時(shí) 習(xí)案 學(xué)生獨(dú)立完成 鞏固知識(shí),提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當(dāng)a = –3時(shí),A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當(dāng)a = 1時(shí),A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數(shù)軸上點(diǎn)x = a在x = – 1左側(cè).
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數(shù)軸上點(diǎn)x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實(shí)數(shù)時(shí),A∩B 與A∩C = 同時(shí)成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時(shí)成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當(dāng)a = 5時(shí),A = {x | x2 – 5x + 6 = 0} = {2,3},此時(shí)A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.
當(dāng)a = –2時(shí),A = {x | x2 + 2x – 15 = 0} = {3,5},此時(shí)A∩B 與A∩C = ,同時(shí)成立,∴滿(mǎn)足條件的實(shí)數(shù)a = –2.
例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當(dāng)x = 3時(shí),A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當(dāng)x = –3時(shí),A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿(mǎn)足題意,故A∪B = {–7,– 4,–8,4,9}.
當(dāng)x = 5時(shí),A = {25,9,– 4},B = {0,– 4,9},此時(shí)A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
【高一數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:
數(shù)學(xué)高一教學(xué)計(jì)劃03-10
高一數(shù)學(xué)教學(xué)計(jì)劃11-02
高一數(shù)學(xué)教學(xué)計(jì)劃12-24
高一數(shù)學(xué)的教學(xué)計(jì)劃04-04
高一數(shù)學(xué)教學(xué)計(jì)劃05-29
高一數(shù)學(xué)教學(xué)教學(xué)計(jì)劃02-06
關(guān)于高一數(shù)學(xué)教學(xué)計(jì)劃01-29
高一數(shù)學(xué)的教學(xué)計(jì)劃通用10-12