亚洲免费人人妻人人,cao78在线视频,福建一级毛片,91精品视频免费观看,高清另类图片操逼,日本特黄特色大片免费看,超碰欧美人人澡曰曰澡夜夜泛

高中數(shù)學(xué)教案

時(shí)間:2024-11-07 14:42:30 數(shù)學(xué)教案 我要投稿

高中數(shù)學(xué)教案模板

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,總歸要編寫教案,借助教案可以更好地組織教學(xué)活動(dòng)。那么優(yōu)秀的教案是什么樣的呢?下面是小編整理的高中數(shù)學(xué)教案模板,僅供參考,歡迎大家閱讀。

高中數(shù)學(xué)教案模板

高中數(shù)學(xué)教案模板1

  教學(xué)目標(biāo):

  (1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進(jìn)一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

  教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

  教學(xué)用具:計(jì)算機(jī).

  教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

  教學(xué)過程:

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學(xué)生思考并回答.教師強(qiáng)調(diào).

  2.坐標(biāo)法和解析幾何的意義、基本問題.

  對(duì)于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實(shí)例分析】

  例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.

  首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.

  解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導(dǎo):上述問題是我們?cè)缇蛯W(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.

  設(shè)是線段的垂直平分線上任意一點(diǎn),則

  即

  將上式兩邊平方,整理得

  這說明點(diǎn)的坐標(biāo)是方程的解.

  (2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

  設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

  到、的距離分別為

  所以,即點(diǎn)在直線上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看:

  解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

  由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.

  讓我們用這個(gè)方法試解如下問題:

  例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.

  分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

  求解過程略.

  【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

  分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:

  (1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

  (2)寫出適合條件的點(diǎn)的集合

  ;

  (3)用坐標(biāo)表示條件,列出方程;

  (4)化方程為最簡(jiǎn)形式;

  (5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

  一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的`解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡(jiǎn);修正.

  下面再看一個(gè)問題:

  例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.

  【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系.

  解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

  由距離公式,點(diǎn)適合的條件可表示為

  ①

  將①式移項(xiàng)后再兩邊平方,得

  化簡(jiǎn)得

  由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.

  【練習(xí)鞏固】

  題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.

  分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.

  根據(jù)條件,代入坐標(biāo)可得

  化簡(jiǎn)得

 、

  由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?

  【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)教案模板2

  教學(xué)目標(biāo):

  1.掌握基本事件的概念;

  2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;

  3.掌握古典概型的概率計(jì)算公式,并能計(jì)算有關(guān)隨機(jī)事件的概率.

  教學(xué)重點(diǎn):

  掌握古典概型這一模型.

  教學(xué)難點(diǎn):

  如何判斷一個(gè)實(shí)驗(yàn)是否為古典概型,如何將實(shí)際問題轉(zhuǎn)化為古典概型問題.

  教學(xué)方法:

  問題教學(xué)、合作學(xué)習(xí)、講解法、多媒體輔助教學(xué).

  教學(xué)過程:

  一、問題情境

  1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?

  二、學(xué)生活動(dòng)

  1.進(jìn)行大量重復(fù)試驗(yàn),用“抽到紅心”這一事件的頻率估計(jì)概率,發(fā)現(xiàn)工作量較大且不夠準(zhǔn)確;

  2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認(rèn)為出現(xiàn)這5種情況的可能性都相等;

 。2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,這6種情況的可能性都相等;

  三、建構(gòu)數(shù)學(xué)

  1.介紹基本事件的概念,等可能基本事件的概念;

  2.讓學(xué)生自己總結(jié)歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);

  3.得出隨機(jī)事件發(fā)生的概率公式:

  四、數(shù)學(xué)運(yùn)用

  1.例題.

  例1

  有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)

  探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗(yàn)為古典概型嗎?(為什么對(duì)球進(jìn)行編號(hào)?)

  探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對(duì)嗎?

  學(xué)生活動(dòng):探究(1)如果不對(duì)球進(jìn)行編號(hào),一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機(jī)會(huì)要比“摸到兩黑”的機(jī)會(huì)大.記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),通過枚舉法發(fā)現(xiàn)有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同.

  探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件.

 。ㄔO(shè)計(jì)意圖:加深對(duì)古典概型的特點(diǎn)之一等可能基本事件概念的理解.)

  例2

  一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中

  一次摸出2只球,則摸到的兩只球都是白球的概率是多少?

  問題:在運(yùn)用古典概型計(jì)算事件的.概率時(shí)應(yīng)當(dāng)注意什么?

  ①判斷概率模型是否為古典概型

 、谡页鲭S機(jī)事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

  教師示范并總結(jié)用古典概型計(jì)算隨機(jī)事件的概率的步驟

  例3

  同時(shí)拋兩顆骰子,觀察向上的點(diǎn)數(shù),問:

  (1)共有多少個(gè)不同的可能結(jié)果?

 。2)點(diǎn)數(shù)之和是6的可能結(jié)果有多少種?

 。3)點(diǎn)數(shù)之和是6的概率是多少?

  問題:如何準(zhǔn)確的寫出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數(shù)?

  學(xué)生活動(dòng):用課本第102頁圖3-2-2,可直觀的列出事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).

  問題:點(diǎn)數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?

  (介紹圖表法)

  例4

  甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

 。1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.

  設(shè)計(jì)意圖:進(jìn)一步提高學(xué)生對(duì)將實(shí)際問題轉(zhuǎn)化為古典概型問題的能力.

  2.練習(xí).

 。1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_________.

 。2)在20瓶飲料中,有3瓶已過了保質(zhì)期,從中任取1瓶,取到已過保質(zhì)期的飲料的概率為_________..

 。3)第103頁練習(xí)1,2.

  (4)從1,2,3,…,9這9個(gè)數(shù)字中任取2個(gè)數(shù)字,①2個(gè)數(shù)字都是奇數(shù)的概率為_________;

 、2個(gè)數(shù)字之和為偶數(shù)的概率為_________.

  五、要點(diǎn)歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.基本事件,古典概型的概念和特點(diǎn);

  2.古典概型概率計(jì)算公式以及注意事項(xiàng);

  3.求基本事件總數(shù)常用的方法:列舉法、圖表法.

高中數(shù)學(xué)教案模板3

  教學(xué)目標(biāo)

  (1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

  (2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

  (3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

  教學(xué)重點(diǎn)難點(diǎn)

  重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點(diǎn)是解組合的應(yīng)用題.

  教學(xué)過程設(shè)計(jì)

  (-)導(dǎo)入新課

  (教師活動(dòng))提出下列思考問題,打出字幕.

  [字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

  (學(xué)生活動(dòng))討論并回答.

  答案提示:(1)排列;(2)組合.

  [評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

  (二)新課講授

  [提出問題 創(chuàng)設(shè)情境]

  (教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

  [字幕]1.排列的定義是什么?

  2.舉例說明一個(gè)組合是什么?

  3.一個(gè)組合與一個(gè)排列有何區(qū)別?

  (學(xué)生活動(dòng))閱讀回答.

  (教師活動(dòng))對(duì)照課文,逐一評(píng)析.

  設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

  【歸納概括 建立新知】

  (教師活動(dòng))承接上述問題的回答,展示下面知識(shí).

  [字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

  組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

  [評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

  (學(xué)生活動(dòng))傾聽、思索、記錄.

  (教師活動(dòng))提出思考問題.

  [投影] 與 的關(guān)系如何?

  (師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

  第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到

  [字幕]公式1:

  公式2:

  (學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

  設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

  【例題示范 探求方法】

  (教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

  [字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

  例2 計(jì)算:(1) ;(2) .

  (學(xué)生活動(dòng))板演、示范.

  (教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的.第2小題.

  [字幕]例3 已知 ,求 的所有值.

  (學(xué)生活動(dòng))思考分析.

  解 首先,根據(jù)組合的定義,有

 、

  其次,由原不等式轉(zhuǎn)化為

  即

  解得 ②

  綜合①、②,得 ,即

  [點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

  設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

  【反饋練習(xí) 學(xué)會(huì)應(yīng)用】

  (教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

  [課堂練習(xí)]課本P99練習(xí)第2,5,6題.

  [補(bǔ)充練習(xí)]

  [字幕]1.計(jì)算:

  2.已知 ,求 .

  (學(xué)生活動(dòng))板演、解答.

  設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

  (三)小結(jié)

  (師生活動(dòng))共同小結(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計(jì)算的兩個(gè)公式.

  (四)布置作業(yè)

  1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

  2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

  3.研究性題:

  在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

  (五)課后點(diǎn)評(píng)

  在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

高中數(shù)學(xué)教案模板4

  一、教學(xué)目標(biāo)

  1、知識(shí)與能力目標(biāo)

  ①使學(xué)生理解數(shù)列極限的概念和描述性定義。

 、谑箤W(xué)生會(huì)判斷一些簡(jiǎn)單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

  ③通過觀察運(yùn)動(dòng)和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

  2、過程與方法目標(biāo)

  培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。

  3、情感、態(tài)度、價(jià)值觀目標(biāo)

  使學(xué)生初步認(rèn)識(shí)有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):數(shù)列極限的概念和定義。

  教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。

  三、教學(xué)對(duì)象分析

  這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對(duì)于學(xué)生來說是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對(duì)極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時(shí),數(shù)列{an}中的項(xiàng)an無限趨近于常數(shù)A,也就是an與A的差的絕對(duì)值無限趨近于0”,并能用這個(gè)定義判斷一些簡(jiǎn)單數(shù)列的極限。但要使他們?cè)谝还?jié)課內(nèi)掌握“ε—N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個(gè)例子,歸納研究一些簡(jiǎn)單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

  四、教學(xué)策略及教法設(shè)計(jì)

  本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過學(xué)生比較熟悉的一個(gè)實(shí)際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過具體的兩個(gè)比較簡(jiǎn)單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無限地趨向于某個(gè)常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對(duì)數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡(jiǎn)單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過這樣的一個(gè)完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的.運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。

  五、教學(xué)過程

  1、創(chuàng)設(shè)情境

  課件展示創(chuàng)設(shè)情境動(dòng)畫。

  今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。

  情境

  (1)我國(guó)古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

  情境

 。2)我國(guó)古代哲學(xué)家莊周所著的《莊子·天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無限次地切,每次都切一半,問是否會(huì)切完?

  大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長(zhǎng)度越來越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。

  2、定義探究

  展示定義探索(一)動(dòng)畫演示。

  問題1:請(qǐng)觀察以下無窮數(shù)列,當(dāng)n無限增大時(shí),a,I的變化趨勢(shì)有什么特點(diǎn)?

 。1)1/2,2/3,3/4,n/n—1

  (2)0.9,0.99,0.999,0.9999,1—1/10n

  問題2:觀察課件演示,請(qǐng)分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?

  師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1。

  那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無限增大,項(xiàng)無限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。

  那么,什么叫數(shù)列的極限呢?對(duì)于無窮數(shù)列an,如果當(dāng)n無限增大時(shí),an無限趨向于某一個(gè)常數(shù)A,則稱A是數(shù)列an的極限。

  提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢(shì)?

  展示定義探索(二)動(dòng)畫演示。

  師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無限小的方式來描述項(xiàng)無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。

  數(shù)列的極限為:對(duì)于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an—A|n的極限。

  課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫演示數(shù)列的變化過程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫面。

  定義探索動(dòng)畫(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫面。

  3、知識(shí)應(yīng)用

  這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

  例1、已知數(shù)列:

  1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計(jì)算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對(duì)值都小于0.017都小于任意指定的正數(shù)。

 。3)確定這個(gè)數(shù)列的極限。

  例2、已知數(shù)列:

  已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。

  猜測(cè)這個(gè)數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.017

  例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。

  4、知識(shí)小結(jié)

  這節(jié)課我們研究了數(shù)列極限的概念,對(duì)數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無限變化的趨勢(shì),而通過對(duì)數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

  課后練習(xí):

  (1)判斷下列數(shù)列是否有極限,如果有的話請(qǐng)求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

  (2)課本練習(xí)1,2。

  5、探究性問題

  設(shè)計(jì)研究性學(xué)習(xí)的思考題。

  提出問題:

  芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無法超過在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?

  這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問題的習(xí)慣。

高中數(shù)學(xué)教案模板5

  教學(xué)目標(biāo)

  1.了解映射的概念,象與原象的概念,和一一映射的概念.

 。1)明確映射是特殊的對(duì)應(yīng)即由集合 ,集合 和對(duì)應(yīng)法則f三者構(gòu)成的一個(gè)整體,知道映射的特殊之處在于必須是多對(duì)一和一對(duì)一的對(duì)應(yīng);

 。2)能準(zhǔn)確使用數(shù)學(xué)符號(hào)表示映射, 把握映射與一一映射的區(qū)別;

 。3)會(huì)求給定映射的指定元素的象與原象,了解求象與原象的方法.

  2.在概念形成過程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.

  3.通過映射概念的學(xué)習(xí),逐步提高學(xué)生對(duì)知識(shí)的探究能力.

  教學(xué)建議

  教材分析

  (1)知識(shí)結(jié)構(gòu)

  映射是一種特殊的對(duì)應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:

  由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.

 。2)重點(diǎn),難點(diǎn)分析

  本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識(shí).

 、儆成涞母拍钍潜容^抽象的概念,它是在初中所學(xué)對(duì)應(yīng)的基礎(chǔ)上發(fā)展而來.教學(xué)中應(yīng)特別強(qiáng)調(diào)對(duì)應(yīng)集合 B中的唯一這點(diǎn)要求的理解;

  映射是學(xué)生在初中所學(xué)的對(duì)應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對(duì)應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對(duì)應(yīng)法則f,由于法則的不同,對(duì)應(yīng)可分為一對(duì)一,多對(duì)一,一對(duì)多和多對(duì)多. 其中只有一對(duì)一和多對(duì)一的能構(gòu)成映射,由此可以看到映射必是“對(duì)B中之唯一”,而只要是對(duì)應(yīng)就必須保證讓A中之任一與B中元素相對(duì)應(yīng),所以滿足一對(duì)一和多對(duì)一的對(duì)應(yīng)就能體現(xiàn)出“任一對(duì)唯一”.

 、诙灰挥成溆衷谟成涞幕A(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.

  教法建議

 。1)在映射概念引入時(shí),可先從學(xué)生熟悉的對(duì)應(yīng)入手, 選擇一些具體的`生活例子,然后再舉一些數(shù)學(xué)例子,分為一對(duì)多、多對(duì)一、多對(duì)一、一對(duì)一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對(duì)一和多對(duì)一的對(duì)應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識(shí)從感性認(rèn)識(shí)到理性認(rèn)識(shí).

 。2)在剛開始學(xué)習(xí)映射時(shí),為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識(shí)映射,而后再選擇用抽象的數(shù)學(xué)符號(hào)表示映射,比如:

 。3)對(duì)于學(xué)生層次較高的學(xué)校可以在給出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語言描述出來,最后教師加以概括,再?gòu)闹幸鲆灰挥成涓拍;?duì)于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

  (4)關(guān)于求象和原象的問題,應(yīng)在計(jì)算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對(duì)映射的認(rèn)識(shí).

  (5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計(jì)算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.

  教學(xué)設(shè)計(jì)方案

  2.1映射

  教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.

  (2)在概念形成過程中,培養(yǎng)學(xué)生的觀察,分析對(duì)比,歸納的能力.

  (3)通過映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.

  教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識(shí).

  教學(xué)用具:實(shí)物投影儀

  教學(xué)方法:?jiǎn)l(fā)討論式

  教學(xué)過程:

  一、引入

  在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡(jiǎn)單的常見函數(shù).在高中,將利用前面集合有關(guān)知識(shí),利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.

  二、新課

  在前一章集合的初步知識(shí)中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究?jī)蓚(gè)集合的元素與元素之間的對(duì)應(yīng)關(guān)系.這要先從我們熟悉的對(duì)應(yīng)說起(用投影儀打出一些對(duì)應(yīng)關(guān)系,共6個(gè))

  我們今天要研究的是一類特殊的對(duì)應(yīng),特殊在什么地方呢?

  提問1:在這些對(duì)應(yīng)中有哪些是讓A中元素就對(duì)應(yīng)B中唯一一個(gè)元素?

  讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對(duì)有爭(zhēng)議的,或漏選,多選的可詳細(xì)說明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)

  提問2:能用自己的語言描述一下這幾個(gè)對(duì)應(yīng)的共性嗎?

  經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)

高中數(shù)學(xué)教案模板6

  一、什么是教學(xué)案例

  教學(xué)案例是真實(shí)而又典型且含有問題的事件。簡(jiǎn)單地說,一個(gè)教學(xué)案例就是一個(gè)包含有疑難問題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過程中的故事,描述的是教學(xué)過程中“意料之外,情理之中的事”。

  這可以從以下幾個(gè)層次來理解:

  教學(xué)案例是事件:教學(xué)案例是對(duì)教學(xué)過程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對(duì)教學(xué)現(xiàn)象的動(dòng)態(tài)性的把握。

  教學(xué)案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因?yàn)檫@一點(diǎn),案例才成為一種獨(dú)特的研究成果的表現(xiàn)形式。

  案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會(huì)。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現(xiàn)。是對(duì)“當(dāng)前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來替代。

  二、如何進(jìn)行教學(xué)案例研究

  教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識(shí)到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過程就是教師自我教育和成長(zhǎng)的過程。

  那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節(jié):案例研究的準(zhǔn)備及實(shí)施、案例研究報(bào)告的撰寫與反思。

  (一)案例研究的準(zhǔn)備與實(shí)施

  1.研究主題的選擇

  案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問、教學(xué)媒體的使用、教學(xué)評(píng)價(jià)語言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問題解決學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內(nèi)容等都可以確定研究的主題。

  研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對(duì)性地作一些理論準(zhǔn)備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計(jì),進(jìn)行訪談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。

  一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對(duì)于自我發(fā)現(xiàn)更有潛力?選擇的事件對(duì)學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個(gè)你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。

  高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問題的思維方式、獨(dú)立思考與合作學(xué)習(xí)等;(3)教師專業(yè)知識(shí)的提升:如數(shù)學(xué)板書與電子屏幕的展示對(duì)學(xué)生思維的影響、數(shù)學(xué)語言的訓(xùn)練對(duì)人們思維的影響、數(shù)學(xué)知識(shí)模式化教學(xué)的優(yōu)劣等。

  2.案例研究的基本方法

  (1)課堂觀察。觀察方法是指研究者按照一定的目的和計(jì)劃,在課堂教學(xué)活動(dòng)的'自然狀態(tài)下,用自己的感官和輔助工具對(duì)研究對(duì)象進(jìn)行觀察研究的一種方法。它可以是教師自己對(duì)教學(xué)對(duì)象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀察,也可以由其他教師來實(shí)施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對(duì)觀察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續(xù)分析案例提供翔實(shí)的原始材料。

  (2)訪談與調(diào)查。對(duì)一些課堂教學(xué)不能觀察到的師生內(nèi)心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運(yùn)用以及教學(xué)達(dá)標(biāo)的成效等一些需要進(jìn)一步了解的問題,可以通過與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀察的材料;對(duì)學(xué)生在課堂教學(xué)活動(dòng)中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對(duì)學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測(cè)試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對(duì)策。

  (3)文獻(xiàn)分析。文獻(xiàn)分析是通過查閱文獻(xiàn)資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強(qiáng)案例分析的說服力。當(dāng)然,對(duì)廣大第一線教師而言,這里所運(yùn)用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻(xiàn)的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過學(xué)生的動(dòng)手操作來獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。

  (二)案例研究報(bào)告的撰寫

  1.常見的案例報(bào)告格式

  撰寫教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當(dāng)前,國(guó)內(nèi)外課堂教學(xué)案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個(gè)共同的特點(diǎn):一是對(duì)案例的客觀描述;二是對(duì)案例中所述問題、關(guān)鍵教學(xué)事件等的分析。

  下面介紹兩種常用的案例編寫的格式:

  (1)“描述+分析”式

  此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對(duì)情景中的一個(gè)問題進(jìn)行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動(dòng)中的某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來。描述的形式可以是一串問答式的課堂對(duì)話,也可以概括式地?cái)⑹,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對(duì)描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說明。分析方法可以是對(duì)描述中提出的一個(gè)問題,從幾個(gè)方面加以分析:也可以是對(duì)描述中的幾個(gè)問題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對(duì)關(guān)鍵教學(xué)事件的正確把握。

  (2)“背景+描述+問題+詮釋”式

  此格式是一種要求比較高的編寫格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分:

  A.主題與背景

  主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長(zhǎng),只需提綱挈領(lǐng)敘述清楚即可。

  B.情景描述

  與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。

  C.問題討論

  這是根據(jù)主題要求與情景描述,進(jìn)行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識(shí)的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說明與注意事項(xiàng)。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識(shí)水平與學(xué)生主動(dòng)學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問題也不同。對(duì)案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。

  D.詮釋與研究

  這部分主要是用教育理論對(duì)案例情景作多角度的解讀。它包括對(duì)課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們?吹竭@樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運(yùn)用與學(xué)生內(nèi)在動(dòng)機(jī)的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。

  2.案例報(bào)告撰寫的關(guān)鍵

  (1)掌握四個(gè)原則。要寫好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習(xí)他人的案例作品以提高寫作技巧外,還應(yīng)把握以下四點(diǎn):

  A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識(shí),以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點(diǎn)和重點(diǎn),尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報(bào)告圍繞主題進(jìn)行情景描述和獲得解決問題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點(diǎn),雕刻高潮。

  案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計(jì)主題就要有新意、有時(shí)代感,通俗地說就是與眾不同,要有獨(dú)特見解、獨(dú)家發(fā)現(xiàn)。來源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫者對(duì)實(shí)踐的發(fā)展與理論的升華程度,包括對(duì)題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長(zhǎng)》、《捕捉資源因勢(shì)利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫作案例時(shí),選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動(dòng)筆,才能寫出高質(zhì)量的案例。

  B.理論性原則:解決問題的策略中應(yīng)當(dāng)蘊(yùn)含一定的教育基本原理和教育思想。實(shí)際是將自己對(duì)教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點(diǎn)撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學(xué)思想和教育基本原理。

  C.敘事性原則:案例報(bào)告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節(jié),可以夾敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個(gè)主題的幾節(jié)課的情景片段。

  D.學(xué)科性原則:數(shù)學(xué)案例報(bào)告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現(xiàn)。

  (2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:

  A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據(jù)操作程序作一點(diǎn)“簡(jiǎn)評(píng)”,最后作“總評(píng)”。

  B.以案說理:對(duì)教學(xué)過程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強(qiáng)化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(zhǎng)篇幅的理性思考。

  C.圖表展示法:用圖表進(jìn)行統(tǒng)計(jì)的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個(gè)問題,都可以在一張或數(shù)張圖表上用百分比或個(gè)(次)數(shù)進(jìn)行統(tǒng)計(jì)。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對(duì)案例的分析和建議。

  D.分析討論法:在撰寫時(shí),應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫者還必須對(duì)討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問題。

  3.優(yōu)秀案例的特征

  (1)時(shí)代性:一個(gè)好的案例描述的是現(xiàn)實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問題為著眼點(diǎn),至少應(yīng)該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應(yīng)該與整個(gè)時(shí)代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺,并對(duì)案例所涉及的人產(chǎn)生移情作用。

  (2)真實(shí)性:一個(gè)好的案例應(yīng)該包括從案例所反映的對(duì)象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對(duì)話、筆記、信函等,以增強(qiáng)案例的真實(shí)感和可讀性。重要的事實(shí)性材料應(yīng)注明資料來源。

  (3)適用性:一個(gè)好的案例需要針對(duì)面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細(xì)過程,這應(yīng)該是案例寫作的重點(diǎn)。如果一個(gè)問題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。

  (4)反思性:一個(gè)好的案例需要有對(duì)已經(jīng)做出的解決問題的決策的評(píng)價(jià)——評(píng)價(jià)是為了給新的決策提供參考點(diǎn)。可在案例的開頭或結(jié)尾寫下案例作者對(duì)自己解決問題策略的評(píng)論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。

  三、案例研究過程中需注意的問題

  1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會(huì)從簡(jiǎn)單的對(duì)話分析問題,做不到全方位、多角度。這說明教師對(duì)教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識(shí)不夠。

  2.缺乏典型性。有的案例對(duì)教學(xué)實(shí)踐沒有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒有實(shí)用價(jià)值。不能夠通過對(duì)某一事件現(xiàn)象的分析、處理、詮釋,達(dá)到舉一反三的效果,這樣的案例對(duì)他人沒什么借鑒作用。

  3.主題不明確。主要體現(xiàn)為:

  (1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進(jìn)行恰當(dāng)?shù)娜∩,看不出作者要反映、探討什么問題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。

  (2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

  4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強(qiáng)案例的可讀性和指導(dǎo)性。如寫成一般的教學(xué)設(shè)計(jì),一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點(diǎn)、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過程”等內(nèi)容;寫成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評(píng)析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。

  5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀點(diǎn),分析闡明的是另一種觀點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。

高中數(shù)學(xué)教案模板7

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)掌握畫三視圖的基本技能

  (2)豐富學(xué)生的空間想象力

  2.過程與方法

  主要通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀

  (1)提高學(xué)生空間想象力

  (2)體會(huì)三視圖的作用

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):畫出簡(jiǎn)單組合體的三視圖

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比

  2.教學(xué)用具:實(shí)物模型、三角板

  四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭開課題

  “橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

  在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的`三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

  (二)實(shí)踐動(dòng)手作圖

  1.講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;

  2.教師引導(dǎo)學(xué)生用類比方法畫出簡(jiǎn)單組合體的三視圖

  (1)畫出球放在長(zhǎng)方體上的三視圖

  (2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖

  學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

  作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。

  3.三視圖與幾何體之間的相互轉(zhuǎn)化。

  (1)投影出示圖片(課本P10,圖1.2-3)

  請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?

  (2)你能畫出圓臺(tái)的三視圖嗎?

  (3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?

  教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問題的看法。

  4.請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

  (三)鞏固練習(xí)

  課本P12練習(xí)1、2P18習(xí)題1.2A組1

  (四)歸納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

  (五)課外練習(xí)

  1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

  2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。

高中數(shù)學(xué)教案模板8

  教學(xué)目標(biāo)

  (1)正確理解排列的意義。能利用樹形圖寫出簡(jiǎn)單問題的所有排列;

 。2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

 。3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

 。4)會(huì)分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

  (5)通過對(duì)排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)難點(diǎn)分析

  本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的`掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中。

  從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。

  公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點(diǎn)分析好的推導(dǎo)。

  排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力。

  在分析應(yīng)用題的解法時(shí),教材上先畫出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。

  在教學(xué)排列應(yīng)用題時(shí),開始應(yīng)要求學(xué)生寫解法要有簡(jiǎn)要的文字說明,防止單純的只寫一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

  三、教法建議

  ①在講解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:

  ab,ac,ba,bc,ca,cb,

  其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。

 、谂帕械亩x中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

  從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

  在定義中“一定順序”就是說與位置有關(guān),在實(shí)際問題中,要由具體問題的性質(zhì)和條件來決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

  在排列的定義中,如果有的書上叫選排列,如果,此時(shí)叫全排列。

  要特別注意,不加特殊說明,本章不研究重復(fù)排列問題。

 、坳P(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

  導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫錯(cuò)。這個(gè)公式的特點(diǎn)可見課本第229頁的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘。”這實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。

  公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):

  (1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁例2就是用這個(gè)公式證明的問題;

  (2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

 、芙ㄗh應(yīng)充分利用樹形圖對(duì)問題進(jìn)行分析,這樣比較直觀,便于理解。

 、輰W(xué)生在開始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫出解法的簡(jiǎn)要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

【高中數(shù)學(xué)教案】相關(guān)文章:

數(shù)學(xué)教案高中教學(xué)06-11

高中必修數(shù)學(xué)教案01-07

高中數(shù)學(xué)教案10-26

高中必修4數(shù)學(xué)教案03-13

高中數(shù)學(xué)教案11-05

高中數(shù)學(xué)教案05-06

高中的數(shù)學(xué)教案(精選24篇)09-13

高中數(shù)學(xué)教案優(yōu)秀11-07

高中數(shù)學(xué)教案【薦】11-23