- 相關推薦
公式法因式分解教案設計
學習目標
1、 學會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學習重難點 重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學過程設計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預習展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應用探究:
1、用簡便方法計算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學生來說會難一些。
【公式法因式分解教案設計】相關文章:
因式分解公式06-04
因式分解教案設計04-25
完全平方公式教案設計01-24
曲面搜索法推求暴雨強度公式參數(shù)04-30
《因式分解---待定系數(shù)法、換元法、添項拆項法》知識點歸納03-05
轉筒法液體黏滯系數(shù)公式的研究05-01
輔助緯度反解公式的 Lagrange級數(shù)法推演05-02
水量平衡法雨洪公式在河道防洪計算中的應用04-30
十進制計數(shù)法教案設計08-26